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Abstract

In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the
quadrilateral case. Optimal H' and L? error bounds independent of the plate hickness are
derived under a mild assumption on the mesh partition.
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1. Introduction

We consider the finite element approximation of the solution of Reissner-Mindlin (R-M
hereinafter) model, which describes the deformation of a plate subjected to a transverse loading
in terms of the transverse displacement of the midplane and the rotations of fibers normal to the
midplane. As it is well-known, standard finite element approximation of this model usually fails
to yield good results when the plate thickness is small, which is commonly referred to locking
phenomenon, so some numerical stabilization tricks such as reduced integration or the mixed
variational principles are needed to overcome this difficulty. MS elements proposed in [9] seem
the simplest rectangular elements in such category [3]. However, quadrilateral elements are
far more flexible than rectangular elements, so it is quite important to construct quadrilateral
R-M plate elements, or extend the existing rectangular R-M elements to the quadrilateral case.
On the other and, it is noticed recently that the extension of rectangular R-M elements to
isoparametric quadrilateral R-M elements is not so straightforward [10]. The goal of this paper
is to extend MS elements to the quadrilateral case and give a mathematical analysis.

We conclude this section with a list of some basic notations used in the sequel. In §2, the
R-M plate model and its varational formulation of Brezzi and Fortin [4, 6] are recalled. In
83, we describe the quadrilateral version of MS elements and the method we used is recast
in the variational formulation of Brezzi and Fortin based upon a kind of discrete Helmholtz
Decomposition. The error estimates are included in §4.

We use the standard notation and definition for the Sobolev spaces H*(Q2) and H*(9) for
s > 0 [1], the standard associated inner products are denoted by (-,-)s and (-,-)s 90, and their
norms by || - ||s and || - ||s,aq, respectively. For s = 0, H*(Q2) coincides with a L*(2). In this
case, the norm and inner product are denoted by || - ||o and (-, -) respectively. As usual, H§(2)
is the subspace of H*(2) with vanishing trace on Q. Let L2(£2) be the set of all L?(Q2) functions
with zero integral mean.
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Throughout this paper, the generic constant C' is assumed to be independent of the plate
thickness ¢ and the mesh size h.
Finally, we use the standard differential operators:

v (o) = ()
divep = Oy /0x + O /Dy, rot ) = Otha/Ox — Oth1 /Oy.
We also need the following vector spaces
Hy(rot, Q) = {q € L*(Q) | rotq € L*(Q),q-t =00n 0N },
where t is denoted as the unit tangent to 912, and
H(div,Q) = {q € L*(Q) | divg € L*(Q) }.

The norm in H(div, ) is given by

. 1/2
Il exaiv) = (Imll§ + I divallo) "

2. Reissner-Mindlin Plate Model

Let Q be a convex polygon representing the mid-surface of the plate. Assume that the
plate is clamped along the boundary 9). Let w and ¢ denote the transverse deflection and the
rotations, respectively, which are determined by the following

Problem 2.1. Find (¢,w) € H(Q) x HY () such that
a(¢, %) + (v, Vo —4) = (g,v) ¥(9h,v) € Hy(Q) x Hp(Q). (2.1)
The shear strain v is defined as
v: =M (Vw - ¢).

Here g is the scaled transverse loading, ¢ is the plate thickness, A\ = Ex/2(1+ v) is the shear
modulus with Young’s modulus E, v the Poisson ratio, and & the shear correction factor. The
bilinear form « is defined as a(n,¥) = (CEn, E), here Ct is defined for any 2 X 2 symmetric
matrix 7 as

E
CT. = m [(1 — l/)T + l/tr(T)I] .
Following [4] and [6], Problem 2.1 can be written into the following decoupled system as
Problem 2.2. Find (r,¢,p,a,w) € HY(Q) x H5(Q) x L3(Q) x Hy(rot, Q) x HE (), such that

(Vr,Vu) = (g,1) Vu€ Hy(Q),

)=
a(¢,¥) — (p,rotp) = (Vr,9p) Vop € Hy(),
—(rot ¢,q) — X't (rot e, q) =0 Vg € L3(Q),
)
)

(a,0) — (p,rotd) =0 Vd € Hy(rot, ),
(Vw,Vs) = (¢ + X\ 12Vr,Vs) Vs € Hy(Q).



