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Abstract

Superconvergence structures for rectangular and triangular finite elements are summa-
rized. Two debatable issues in Zhu’s paper [18] are discussed. A superclose polynomial to
cubic triangular finite element is constructed by area coordinate.
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1. Summary on Superconvergence Structures

Suppose that domain (2 is a square with the boundary I and triangulation J” in € is uniform.
We shall discuss n-degree triangular family P, = ), Li<n bi;xr'y? and n-degree rectangular
family @,. Denote by S = {v € H'(Q),v|, € P,(or Q,), 7 € J*, v =0 on I'} the n-degree
finite element subspace. The solution u € H}(Q) of second order elliptic problem and its finite
element approximation (Ritz-projection) u; € S¥ satisfy the orthogonal relation

A(u —up,v) =0, ve Sy, (1)
where the bilinear form A(u,v) = [ (a;; DiuDjv + agouv)dz is assumed to be bounded and

Hgi-coercive. Denote by W*P(Q) Sobolev space with norm ||ul|rp.q. If p = 2, simply use
H%(Q) and ||u||,q. It is well known that there are the error estimates

[ — un|l1,00.0 = O(W" ' Inh), 1=0,1. (2)

But, up or Duy, at some specific points possibly possess the higher rate of convergence (called
superconvergence by Douglas).

In the conference on superconvergence in finite element method on March 15-30, 2000, at
Berkeley, two chairmen Babuska and Wahlbin claimed that there are three present schools of
superconvergence, i.e Ithaca (Locally symmetry theory [12,13,14]), Texas (Method based on the
computer [1,2]) and China (Element othogonality analysis, see [6,7,11]). In another conference
on three-dimensional finite elements on August 2000 at Jyvaskyla, Brandts and Krizek [3] also
summarized three different methods of three schools.

From numerous researches on superconvergence up to now, we know that there are two
basic structures of superconvergcne, i.e. Gauss-Lobatto points and symmetric points. Firstly,
for regular rectangular element u, € Qx(n) = 2:(2,7].)@",A bijziyl, where I, = {(i,5)|0 <
i,j <nyi+j <n+A}1< A <n, we early known [5,6,10,19] that u;, and its gradient Duy,
have superconvergence at n + 1-order Lobatto points and n- order Gauss points, respectively.
Besides, if n is odd, the average gradient Duy, has superconvergence at vertexes and n-order
Gauss points on each side of the element. Secondly, if the number of parameter is decreased, it
reduces to the rectangular defective (or serendipity) family Q'(n) = P, ® span{z™y, zy™} and
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n-degree triangular family P, =3, ., bi;x'yd. At this time, uy (for even n) and the average
gradient Duy, (for odd n) have superconvergence at symmetric points T}, where T}, consists of
four vertexes, four side midpoints and center for rectangular element (see [1,2,9,15] ), and three
vertexes and three side midpoints for triangular element (see [1,2, 6,7,8,12,13,14,16]).

Here, an interesting topic for us is that whether there exist other superconvergence points
for triangular elements, besides symmetric points. We should point out that Wahlbin [12,13,14]
first time proved superconvergence at locally symmetric points in quite extensive framework.
Of course, their paper has not given the answer to the question mentioned above. However,
Babuska [1,2] have calculated the derivative Dyuy in a triangle for 1 < n < 7 based on the
computer and have pointed out that the midpoint of a side parallel to z-axis is only supercon-
vergence point for D,uj (but the averaging have not been considered) for n = 1,3,5,7, and
have found no other points. And no superconvergence point of D,juy for n = 4,6, but, n = 2
is an exceptional case, 2-Gauss points on this side are superconvergent. Recently, Babuska
and Strouboulis have depicted a fig. 4.7*.8 for D,u of the cubic triangular element in their
new book [2] and especially emphasized that “Note that the mid-points of the sides which are
parallel to the z-axis are the only superconvergence points in the case of the Poisson equation”.
We also proved [8] that D,uy for cubic triangular element uj, has no superconvergence points,
besides symmetric points, and there are no superconvergence points for u itself at all. We
exhibit the numerical examples in a square 2 = {0, z,y < 1} as follows.

Counsider an elliptic problem —Au = fin Q,u=00nTy={z=0,0<y<1}U{y=0,0<
z<ltand Dyu=0o0onT; ={r=1,0<y <1}U{y =1,0 <z < 1}. The exact solution
u = (13z — 822 + 2°)(2y — y?). Q is subdivided into regular triangular uniform meshes .J",
h=1/N,N = 4,8. We have calculated the cubic finite element ux and its error ey = u — un
in the following table 1.

The table 1. The error e4, egs at nodes and the ratio ey : eg
z=1/4 1/2 3/4 1
y=1/4| 2.380E-4 | 1.913E-4 | 1.669E-4 | 1.436E-4
1.207E-5 | 1.117E-5 | 9.489E-6 | 8.393E-6
18.86 17.13 17.57 17.11
y=1/2| 2.399E-4 | 1.935E-4 | 1.699E-4 | 1.593E-4
1.393E-5 | 1.243E-4 | 1.074E-5 | 9,521E-6
17.22 15.57 15.82 16.73
y=23/4| 2.680E-4 | 2.142E-4 | 1.876E-4 | 1.783E-4
1.503E-5 | 1.355E-5 | 1.187E-5 | 1.063E-5
17.83 15.81 15.80 16.77
y=1 2.510E-4 | 2.200E-4 | 1.910E-4 | 3.630E-4
1.501E-5 | 1.421E-5 | 1.252E-5 | 2.274E-6
15,78 15.48 15.26 16.00

We see that when triangulation is refined twice, the error ratio e4 : eg = 15.3 ~ 18.9, thus
the cubic triangular element has only the accuracy O(h*) at nodes, no superconvergence. A
detailed data analysis shows that its accuracy at nodes is the worst. The facts mentioned
above show that the cubic triangular elements do not possess Gauss-Lobatto point structure of
superconvergence, which is of a great difference from the regular rectangular elements.

2. Discussion on Zhu’s paper [18]

Early Chen [4] proved by the element analysis that the average gradient Duy, for triangular
linear element has superconvergence at six symmetric points in each triangular element. Later,
Zhu [16] proved by this method that the quadratic triangular element uy, itself has superconver-
gence at six symmetric points. Although the natural superconvergene points within an element



