Journal of Computational Mathematics, Vol.20, No.4, 2002, 381-390.

TWO-SCALE CURVED ELEMENT METHOD FOR ELLIPTIC
PROBLEMS WITH SMALL PERIODIC COEFFICIENTS*!

Jin-ru Chen
(School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, China)

Jun-zhi Cui
(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences,
Beijing 100080, China)

Abstract

This paper is concerned with the second order elliptic problems with small periodic
coefficients on a bounded domain with a curved boundary. A two-scale curved element
method which couples linear elements and isoparametric elements is proposed. The error
estimate is obtained over the given smooth domain. Furthermore an additive Schwarz
method is provided for the isoparametric element method.
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1. Introduction

Multiscale phenomenon is often encountered in science and engineering. Typical examples
include composite materials and flows in porous media. They are usually described by partial
differential equations with highly oscillatory coefficients. Solving these problems by standard
element methods is difficult because achieving an approximate solution needs very fine trian-
gulation in general and hence tremendous amount of computer memory and CPU time. Thus
it is desirable to have a numerical method that can capture the effect of small scales on large
scales without resolving the small scale details.

Two-scale method is a very promising method for solving the above problems (see [4] [5] [6],
and references therein). It couples macroscopic scale and microscopic scale together, and not
only reflects the global mechanical and physical properties of structure, but also the effect of
micro-configuration of composite materials and flows. Using this method, we can slove elliptic
problems with small periodic coefficients by solving a homogenization problem with coarse
meshes in whole domain and a periodic problem with fine meshes only in one small periodic
subdomain.

The objective of this paper is to study the elliptic problems with small periodic coefficients
on a bounded domain with a curved boundary. A dual coupled expression is used to approx-
imate the exact solution. Since the homogenization problem is solved with coarse meshes in
whole smooth domain, while the periodic problem is solved with fine meshes only in one small
periodic subdomain, in order to match the errors of two problems, it is natural to solve the
homogenization problem using high order elements and the periodic problem using low order
elements. If we use straight side element method to solve the homogenization problem, the
smooth domain is approximated by a ploygonal domain. In this case, the error is not optimal,
since the best error in the H! norm is O(hg/Q), where parameter hg is the mesh size (see [11]).
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To overcome this shortcoming, we use isoparametric element method to solve the homogeniza-
tion problem on smooth domain. But if one uses isoparametric element method in the usual
way as in [2], the approximate solutions and the error estimates can be obtained only over an
approximate domain Qp,. In general, the approximate domain 2y, is different from the given
smooth domain 2. To obtain the approximate solutions and the error estimates over the given
smooth domain, we use the method given in [9] to define isoparametric element space. Based
on this idea, the error of two-scale element method is derived over the given smooth domain.
Finally, an additive Schwarz method is proposed for the isoparametric element method. Note
that for isoparametric elements both triangulations and finite element spaces are nonnested.
Moreover isoparametric element spaces do not contain usual linear conforming element space
which is defined on same mesh or coarse meshes in a natural way as a subspace of H}. So we
choose a special linear conforming element space as coarse mesh space (for details see section
4).

The remainder of this paper is outlined as follows. Section 2 presents the continuous prob-
lems and some notations. Section 3 gives the two-scale curved element method and estimates
the error. Section 4 provides an additive Schwarz method.

In this paper, C' (with or without subscripts) denotes a generic positive constant with
different values in different contexts. For any domain D, we use Sobolev space W (D) with
Sobolev norm | [lw.(p) and seminorm |- [y (p) (see [1]). If D = €2, we omit D. Moreover if
D = Q and p = 2, we denote the usual L? inner product by (-,-), the Sobolev norm by || - ||
and seminorm by |- |,,. Also we use Einstein summation notation, i.e., repeated index indicates
to sum.

2. Preliminaries

Consider the following elliptic boundary value problem on a bounded domain Q C R? with
a sufficiently smooth curved boundary I' = 9Q:

Luc=—-—vy-(a*yu)=f, in €
{ ue =0, on T, (2.1)

where a¢ = (af;(z)) is a bounded symmetric positive definite matrix with small period €, and

f is a sufficiently smooth function.

Let y = £ and a = (a;5(y)) = (aj;(z)), then a;;(y) is a periodic function with period 1. Let
Q = (0,1) x (0,1). Assume a;;(y) € WL(Q). First we introduce a periodic function Ni(y)
which is the solution of the following equation

_%(al] %J?Ik) = aiyiaika in Q: (22)
N, =0, on 0Q.

From [8] we know that problem (2.2) has H? regularity, i.e., problem (2.2) has a solution
Ny, € H%(Q) satisfying

0
I Vel 22 0) < C||@aik||L2(Q)-

i

Then we define a constant matrix a® = (af;) by

ON;
a?-:/ aij + aig—==2)dy.
J Q( J kayk)y



