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Abstract

This paper first presents the stability analysis of theoretical solutions for a class of
nonlinear neutral delay-differential equations (NDDEs). Then the numerical analogous
results, of the natural Runge-Kutta (NRK) methods for the same class of nonlinear NDDEsS,
are given. In particular, it is shown that the (k,[)-algebraic stability of an RK method
for ODEs implies the generalized asymptotic stability and global stability of the induced
NRK method.
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1. Introduction

In the last several decades, there has been a growing interest in the numerical stability for
DDEs(cf. [1-14]). In 1988, A.Bellen, Z. Jackiewicz and M.Zennaro[7] first extend the researches
to the scalar linear NDDEs. Latterly, a lot of works for the systems of linear NDDEs were
presented(cf.[8-12]). However, there are much difficulties to assess the numerical stability of
nonlinear NDDEs. In view of this, T.Koto [13] adapted NRK methods (cf.[14]) to a class
of nonlinear NDDEs in real space R%, and studied their asymptotic stability with a discrete
analogue of the Liapunov functional.

In this paper, by an alternative approach, we futher deal with the stability of theoretical
and numerical solutions for a class of nonlinear NDDEs in complex space C%. Particularly, it
is shown that a NRK method induced by a (k,1)—algebraically stable RK methods for ODEs,
under suitable conditions,preserves the analogous stability of the original equations.

2. Test Problem and Its Stability

For giving subsequent analysis, we first set some notational conventions. Let (e, o), || @ ||
denote the inner product and the induced norm in space C?, respectively. Correspondingly, the
inner product and the induced norm in space (C?)! are defined as follows:

l
<U7V> = Z(Uz’;vi>, ||U||Z = <U7 U>7

i=1

where U = (u1,us,...,u),U = (v1,vs,...,v) € (CH)! and us,v; € CUi = 1,2,...,1). More-
over, it is always assumed that each matrix norms, arising in the following, is subject to the
corresponding vector norm.
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Consider the following systems of nonlinear NDDEs

Lly(t) — Ny(t — )] = f(t,y(t),y(t — 7)), t>0, @.1)
y(t) = o(t), —7<t<0, '
and ]
al2() = Nz(t —1)] = f(t,2(t),2(t — 7)), > 0,
{ 20 = (1), ~r <t <0, 22)

where 7 > 0 is constant delay, N € C?*¢ stand for a constant matrix with [|N|| < 1,
#,1:[-71,0] — C? are continuous functions, and f:[0,+o0) x C? x C? — C? is a assigned
mapping subject to

Re((z1 — x2) — N(y1 — v2), f(t,m1,91) — f(t,22,92))

2.3
< aller — ol + Bllys —glP £30, @1,w051,p0 € CY, (2:3)

in which «, 8 are real constants.
The problems of the form (2.1) can be found in the systems with lossless transmission lines
(cf.[16]). In the following,all the problems (2.1) with (2.3) will be referred as the class Ry 3.

For instance, a complex d-dimensional linear system

Lly(t) — Ny(t —7)] = Ly(t) + My(t — 1), t>0,
y(t) = o(t), —7 <t <0,

belongs to the class R, 3 whenever the matrix

ol (L+L—2al M~ L*N
“2\ M*-N*L —N*M-M*N 28I

is negative definite, where I denote a d-dimensional identity matrix and * is the conjugate
transpose symbol of the matrices, since

Re((z1 — 22) — N(y1 — y2), L(z1 — ®2) + M (y1 — y2))
—alley — z2l]* — Bllyr — yal?

= <<$1 _$2> 7G<x1 _:62)): Vg, @2, y1,Y2 € cd.

Y1 — Y2 Y1 — Y2

For the problems of the class R, g, we obtain the following stability results.
Theorem 2.1. Suppose problems (2,1),(2.2) belong to the class Ry g with

a<0, B<allN|P. (2.4)

Then we have

() lly(t) - ()| < r=hxy _max [6(6) — w(O)], >0,

7<6<0
(b) for a <0, lm lly(t) — (1) ~ N(y(t —7) — 2(t ~ )]l = 0.
Proof. Let
u(t) =y(t) —z(t), o(t) = Ju(t) — Nu(t - 7)|]%,

F(t) = fty(8),y(t — 7)) = f(£,2(2),2(t = 7).
Then by (2.3)

v'(t) =2Re(u(t) — Nu(t — 1), F(t))
< 2fellu@®)* + Bllut = DIP], t>0,



