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Abstract

In this paper, a nonoverlapping domain decomposition method, which is based on the
natural boundary reduction(cf. [4, 13, 15]), is developed to solve the boundary value
problem in exterior three-dimensional domain of general shape. Convergence analyses
both for the exterior spherical domain and the general exterior domain are made. Some
numerical examples are also provided to illustrate the method.

Key words: Domain decomposition, D-N Algorithm, Exterior 3-D problem.

1. Introduction

In recent years, the elliptic boundary value problems in unbounded domains have drawn
more and more attention. To solve an equation in an unbounded domain numerically, a basic
idea is to limit the computation to a bounded domain by introducing an artificial boundary.
Based on this idea, many numerical methods, such as the coupling of BEM and FEM, the FEM
with boundary conditions at artificial boundary, the coupled finite-infinite element method,
the DDM(domain decomposition method)(ct.,e.g., [7, 6, 12, 3, 5, 2, 16, 17] and so on), have
been put forward. All these methods have their own advantages as well as limitations. It is a
practicable way to combine the natural boundary element method with the traditional FEM and
DDM to solve problems in unbounded domains. However, the methods given in some published
papers are only for two-dimensional cases(cf. [16, 17]) and cannot be directly extended to three-
dimensional problems. In this paper, by taking Poisson equation as an example, we shall suggest
a nonoverlapping DDM for exterior three-dimensional problems. By choosing a sphere as an
interface, we turn the original problem into two subproblems, i.e., one in a bounded domain
and the other in a regular unbounded domain(exterior spherical domain). We then solve the
two subproblems alternately to acquire an approximate solution of the original problem. The
subproblem in bounded domain is treated by the traditional FEM. The unique aspect of our
method is to adopt the recent results of the natural boundary element method (cf. [10]) to
solve the subproblem in unbounded domain, which makes our method simple in analysing and
easy to be implemented.

The rest of this paper is organized as follows. Section 2 develops the D-N alternating
algorithm; Section 3 studies the convergence of the D-N method for exterior spherical domain;
Section 4 extends the result of Section 3 to general exterior domain; Section 5 discusses the
discrete form of the D-N alternating algorithm; Section 6 presents some numerical results.

* Received March 26, 1999.
DThe Project supported by the Special Funds for State Major Basic Research Projects, the Chinese National
Key Project for Basic Research and the National Natural Science Foundation of China.



78 D.H. YU AND J.M. WU

2. Dirichlet-Neumann(D-N) Alternating Algorithm

Consider the following exterior boundary value problem:
{ —Au=f, inQ°,

(2.1)
u =g, on X,

where @ C R® is a bounded domain and Q¢ denotes R*\Q. ¥, = 09 is a piecewise smooth

surface. g € H%(Eo) and f € L?(Q°) are given functions. To guarantee ensure the existence
and uniqueness of the solution of (2.1), we must assume that u vanishes at infinity(cf. [18]). In
the following discussion we shall also assume that function f has compact support.

Introduce a sphere ¥; = {(r,0,¢)|r = R;} for an appropriate R; to enclose boundary
Yo and the support of f. Make sure that dist(X;, Xo) > 0. Then Q¢ is decomposed into
two mutually disjoint subdomains, i.e., an interior subdomain denoted by {2; and an exterior
subdomain denoted by 5. 2; and Q are nonoverlapping domains. For exterior boundary
value problem (2.1), we suggest the following D-N(Dirichlet-Neumann) alternating algorithm:

—AU,S' = 0, in QQ,

’U’g = An; on E17 (220,)
lim uy =0,
r—0o0
—Aul = f, in 4,
r = 7 E ’
aul g ) on o (2.20)
uy uy
it S )
6711 87?,27 on &1,
AL = 0 ul 4 (1 —6,)A", (2.2¢)

where u}’ and ul are the n-th approximate solutions in €y and 3; n; and ny denote the unit
outward normals of ¥; with respect to the two neighboring subdomains; 6,, denotes the n-th
relaxation factor and A° is an arbitrary function in Hz ().

Note that, on interface £, only the value of the normal derivative of the solution of (2.2a)
n

0
is needed in solving (2.2b). So it is unnecessary to solve (2.2a). Actually we can obtain ]

8n2
directly from A™ by making use of the following natural integral equation(cf. [10]):
ouy T ARG, @) sin g’
—= = — T df'dy. 2.3
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v in (2.3) satifies cosy = cos@ cos@’ + sinfsin @’ cos(¢ — ¢') and the hypersingular integral in
(2.3) must be understood as the normalization of divergent integral in the sense of generalized
function. The details about the computation of this kind of integrals can be found in [8, 13,
14, 10].
For \(6, ) € H%(El), make harmonic extensions of A\(f, ¢) to 1 and - respectively to
acquire functions Hy A and Hz\, namely, Hi A satifies
—AHl)\ = 0, in Ql,
-El-lA = A; on El; (24)

Hl)\ZO, on 20,

while Hy\ satifies
—AHzA = 0, in Qz,
HyA =), on Xy, (2.5)
lim HyA =0.
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