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Abstract

In this paper we consider domain decomposition methods with polynomial Lagrangian
multipliers to two-dimentional elliptic problems, and construct a kind of simple precondi-
tioners for the corresponding interface equation. It will be shown that condition number
of the resulting preconditioned interface matrix is almost optimal (namely, it has only
logarithmic growth with dimension of the local interface space).
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1. Introduction

In recent years the non-overlapping domain decomposition methods (DDMs) with non-
matching grids have attracted particular attention of computional experts and engineers (see
[1]-[9]). This kind of DDM allows non-coincidence of nodal points at common edges (or common
faces) of two neighbouring subdomains. Thus it can be applied to solving the problems of
changing meshes (for example, the multi-body contact problems in solid mechanics and the
relative motion problems in oil exploration), and can be applied to designing the optimal meshes,
namely, one can choose different mesh-sizes and different orders of approximate polynomials in
different subdomains according to different properties of solutions and different requirements
of practical problems.

There are three kinds of important algorithms to deal with the interface non-conformity gen-
erated by the non-matching grids, namely, the mortar element method (see [1]-[3], [8]-[10]), the
Lagrangian multipliers method (see [4], [5], [10]-[14]) and the augmented Lagrangian method
(see [9]). For the mortar element method, the interface variable is chosen as a proper approxima-
tion of the trace of numerical solution on the interface, thus it is a direct extention of the usual
non-overlapping DDM. For the Lagrangian multipliers method, the interface variable (namely,
the Lagrangian multiplier) is chosen as a proper approximation of the normal derivative on the
interface, which transforms the minimization problem with restriction (namely, weak continuity
of the trace on the interface) into the corresponding saddle-point problem without restriction,
thus it is the dual algorithm of the mortar element method. The augmented Lagrangian method
can be understood as a mixed algorithm generated by combining the mortar element method
with the Lagrangian multiplier method.

The DDM with Lagrangian multiplier (DDMLM) has obvious advantages over the mortar
element DDM: (a) the interface variable associated with DDMLM need not be continuous at
the cross-points (for the case of two-dimension) or on the cross-edges (for the case of three-
dimension), so the corresponding interface equation can be formed easily; (b) the construction
of the interface subspace associated with the DDMLM is flexible, thus the non-matching grids
do not bring about any difficulty; (¢) the DDMLM may reduce the size of the interface problem.
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In [5], we introduced and analysed a kind of DDMLM in which the space of the Lagrangian
multipliers consists of polynomials of the certain degree n (in [11] and [12], this method was
mentioned too). This method has advantages in comparison with another kind of DDMLM
in which special partitioning of the interface is introduced and the space of the Lagrangian
multiplier is chosen as the corresponding finite element space (refer to [1], [9], [10] and [12]-
[14]): (i) the numerical integrations defined on the interface can be calculated conveniently;
(ii) the size of the interface problem can be reduced greatly when the exact solution has good
smoothness on the interface. However, for this kind of DDMLM condition number of the
interface matrices is highly sensitive to the number n.

It is well known that, for non-overlapping DDMs, construction of interface preconditioners
is a core problem. From the advantage (a) mentioned above, we know that construction of
interface preconditioner associated with DDMLM is essentially different from the case of the
usual non-overlapping DD method (how to construct coarse subspace ?).

In this paper we advanced a new idea (refer to [19] and [20]) in which the coarse subspace
consists of piecewise contants. Based on this, we construct a kind of preconditioner for the
DDMLM to two-dimensional elliptic problems, and show that condition number of the corre-
spondding preconditioned interface matrix is almost optimal. The preconditioner proposed in
here has obvious advantages: (i) it is independent of the cross-points, thus the computational
procedure is easy to design (in comparison with the preconditioners constructed in [15] and
[16]); (ii) it is independent of the trace space, thus the problems of changing meshes do not
bring about any difficulty (note that all the preconditioners introduced in [4], [13] and [14]
depend on the usual Scur complement); (iii) the local solvers are defined on the common edges
of two neighbouring subdomains, thus it results in cheap calculation (in comparison with the
preconditioners discussed in [8], [13], [14], [17] and [18]);

The idea advanced in this paper is also fit for three-dimensional elliptic problems (see [19]).

2. The DDMLM

For ease of notation, we consider the following model problems:
{—Au-l—nu:f, in €, (2.1)
u =0, on 01, )

where Q C R? is a polygonal domain, and 7 is a positive number which is bounded above.

The domain {2 is decomposed into NV polygons €2;. We first make the following assumptions:
H,: all subdomain 2; are of size d in the sense that there exists constants ¢y and ¢; independent
of d such that each ; contains (resp.is contained in) a circle of radius cod (resp.c;d);
H, :For i # j, we require that if two (open) edges F' C 0€; and F"' C 0f; share a common
point, then ' = F = ;) = Fj;. Let F={J F}; denotes the entire interface;
Hj: each subdomain ; consists of quasi-uniform triangular or quadrilateral elements with
diamenter h;.

For a natural number n, and h = Hax hi, we assume that

Since IV is in general large, namely, d is small, thus we can assume that
H; nSCdiz
Now, we define the approximation spaces as follows:
Let Sp,(£2;) be the space of continuous piecewise m; degree polynomials defined on ;. Set
Sh() ={p: ¢ loa=0,¢ o, €Sp(2),i=1,---,N}
Sn(Fij) = {\ij : Aij is a polynomial of degree<n on Fj;}

Sn(aﬂz) = {/\z N\ |Fij GSn(Fij),Fij C 891}

Sn(F) = {)\ DA |Fij Gsn(Fm) fOT' all FZJ}
Shxn = Sn(Q) xSy (F)

Remark 1. The boundary nodes of the triangulation of €; and {1; need not coincide on
the common edges (namely, we have not imposed any matching conditions for the grids at



