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Abstract

In this paper, we present some invariants and conservation laws of general linear meth-
ods applied to differential equation systems. We show that the quadratic invariants and
symplecticity of the systems can be extended to general linear methods by a tensor prod-
uct, and show that general linear methods with the matrix M=0 inherit in an extended
sense the quadratic invariants possessed by the differential equation systems being inte-
grated and preserve in an extended sense the symplectic structure of the phase space in
the integration of Hamiltonian systems. These unify and extend existing relevant results
on Runge-Kutta methods, linear multistep methods and one-leg methods. Finally, as spe-
cial cases of general linear methods, we examine multistep Runge-Kutta methods, one-leg
methods and linear two-step methods in detail.
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1. Introduction

Investigating whether a numerical method inherits some dynamical properties possessed by
the differential equation systems being integrated is an important field of numerical analysis
and has received much attention in recent years [1-10,13,16-24,26,27]. See the review articles
of Sanz-Serna[9] and Section II.16 of Hairer et. al.[2] for more detail concerning the sym-
plectic methods. Most of the work on canonical integrators has dealt with one-step formulae
such as Runge-Kutta methods(RKMs)[2,3,6,7-10,13,18,20-22,24,26] and Runge-Kutta-Nystrom
methods (RKNMs)[1,2,9,17]. The study of canonical multistep methods has been restricted
to linear multistep methods(LMMs) and one-leg methods(OLMs)[2,4,5,16,18,23,27]. Moreover,
Cooper[7] has shown that Runge-Kutta methods with algebraic stability matrix M=0 preserve
the quadratic invariants of the systems, and Sanz-Serna[10] and Lasagni[6] have shown them
to be symplectic when applied to Hamiltonian systems. Eirola and Sanz-Serna[23] have shown
that, for symmetric one-leg methods, the quadratic invariants and symplecticity of the sys-
tems can be extended to one-leg methods by a tensor product. Eirola[24] demonstrated that
all these results follow from a general monotonicity property of these methods for quadratic
forms. Bochev and Scovel[18] showed that symplecticity follows from the fact that these meth-
ods preserve quadratic integral invariants and are closed under differentiation and restriction
to closed subsystems, furthermore pointed out that though general linear methods are closed
under both differentiation and restriction to closed subsystems, it is difficult to determine the
form of the quadratic invariants to be preserved by general linear methods simultaneously with
the conditions on the coefficients of the methods which will guarantee the preservation of these
invariants.
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The main purpose of the present paper is to answer the questions from Bochev and Scovel[18]
and to unify and extend the existing results in [6,7,10,23] and to investigate under which
conditions a general linear method(GLM) is symplectic in an extended sense when applied
to Hamiltonian systems of differential equations and under what conditions a GLM inherits the
quadratic invariants possessed by the differential equation systems being integrated.

Consider the following system of differential equations on RZN[25]
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where H(p, q) with
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is some real valued smooth function on R?N. We call (1.1) a canonical system of differential
equations with Hamiltonian H. We can write (1.1) in the vector form
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Then (1.1) follows that
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here and in the following text, I; denotes the [ x! identity matrix, [ = 1,2,---. The phase space
R?N is equipped with a standard symplectic structure defined by the fundamental differential
2-form[21]
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where the symbol A denotes exterior product. Let 1) be a diffeomorphism of R?N,
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1 is called a symplectic transformation if ¢ preserves the 2-form w, i.e.,
N N
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This is equivalent to the condition that
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