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Abstract
A new method is presented by means of the theory of reproducing kernel space and
finite difference method, to calculate Euler system of equations in this paper. The results
show that the method has many advantages, such as higher precision, better stability, less
amount of calculation than any other methods and the reproducing kernel function has
good local properties and its derived function is wavelet function.
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1. Introduction

In recent years, more and more people are interested in solving Euler system of equations.
They presented various methods to simulate the flow of the complicated fluid field. It is well
known that Euler system of equations has described many practical engineering problems, such
as spherically symmetric flow, the flow inside a pipe, whose sectional area changed slowly, the
radius of curvature is large, sectional area is small and so on. And it not only describes the
incompressible ideal fluid one-dimension unsteady flow but also is the foundation for solving
Navier-Stokes system of equations, which describes the viscous flow, hence it lies at the heart of
fluid mechanics, that is why, solving Euler system of equations possesses important significance.
But the various methods given for solving Euler system of equations so far are only confined
to classical ones, such as finite difference and finite element methods, their effects are not
very well. This paper combines the reproducing kernel with the finite difference method and
gives the approximate solution to Euler system of equations. Numerical experiment results
indicate that the effect is very well. Because the reproducing kernel function possesses the
good local properties, such as the odd order vanishing moment, symmetry and regularity, its
dilation has fast attenuation etc., its derived function is a wavelet function which possesses even
order vanishing moment and anti-symmetry, regularity and its dilation has fast attenuation. So
reproducing kernel function possesses its operation superiority and the description superiority
of wavelet function, that is why the superiority of this method prevails over others. Firstly,
this method can command simply, conveniently and easily. Secondly, it can apply extensively,
especially solving complicated non-linear partial difference equations, which are solved hardly.
Thirdly, the method possesses the advantages of higher precision and better stability compared
with the others. In addition, we can construct two-dimension reproducing kernel space by
tensor product form and extend it to two-dimension Euler system of equations.
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2. Reproducing Kernel Space H?(R)

2.1 Definition of reproducing kernel space H%(R)

Definition. H?(R) = {u(z)|u(x) and u'(x) are absolutely continuous function in R, u,u’
and u" € L*(R)}. Inner product on H?(R) is defined as follows:

<u,v >= / (uv + 2u'v" + u"v")dx.
R
By reference [1], we know H?(R) is a reproducing kernel space and its reproducing kernel is:
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namely
Yu € H*(R), < u(f),Ks(x — &) >=u(x).
Theorem. Let {z;}' , denote a system where x; are pairwise different nodes in R, and

let ¢i(z) = Ko(x — x;), then {¢;(x)}, is a linearly independent function system in H*(R),
we obtain an orthonormal system {¢F(x)}? , by Schmidt orthogonalization, where ¢} (x) =

2
> akigr(x), when {x;}2, is dense in R, {¢F}2, is an orthonormal basis in H*(R), namely
k=1

n

lim (H,u)(z) = u(e), where u(z) € HX(R), (Hyu)(@) = 3 (u,67)9}.
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Proof. Let
Ci¢1+ Capp + -+ Cngpp =0 (2.1)

We use proof by contradiction. Assume {¢;(z)} ; is linearly independent, we apply Fourier
transform to both sides of the (2.1), then we get

Cle—iamw + 026—1'%204' + .- Cne_m"w = 0. (22)

We may as well let C; # 0, obtain

C, . o

1= (22 i(x1—z2)w L. N (e —Tn)w 2.3

(Goeir e 4 g heilenani) 2:3)
By (2.3), we know there is one that doesn’t equal zero in Ci,---,C,, setting Cy # 0, then
g—f #0. Let x1 —z2 =91, ,21 — Ty, = Yn, g—f = ag, g—;‘ = a,, and by deriving (2.3), we get
0 = —(asy2e™ > + -+ + apype”n¥). (2.4)

Obviously ya, -, yn # 0, let asys = ba, -+, anyn = by, then (2.4) is converted into (2.5)
0= —(bee™ 2% 4 ... 4 be” W), (2.5)

Since by # 0, at least there is one of them doesn’t equal zero in b3, - - -, by, setting bz # 0,
and so on and so forth, we get c,e ¥"“ = 0 (¢, # 0) which leads to an absurdity. So {¢;}?*,
are linearly independent.



