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Abstract

By means of the determinantal formulae for inverse and reciprocal differences with
coincident data points, the limiting case of Thiele’s interpolating continued fraction ex-
pansion is studied in this paper and given numerical example shows that the limiting
Thiele’s continued fraction expansion can be determined once for all instead of carrying
out computations for each step to obtain each convergent as done in [3].
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1. Introduction

When we talk about the interpolation by polynomials, it is natural for us to have at heart
the Lagrange interpolation, the Hermite interpolation and the Newton interpolation. Of these
interpolants, the Newton interpolating polynomial is probably most favourite because of its
advantages in carrying out computations and performing limits. As we know, a Newton in-
terpolating polynomial is established on the basis of the divided differences, whose recursive
calculation makes it possible that the Newton interpolant can be obtained by adding new sup-
port points one at a time after having interpolated the previous ones. Furthermore, the relation
between divided differences and derivatives allows the support points in a Newton interpolant
to coincide with one another, which is beyond the conditions required by the Lagrange poly-
nomials. It is interesting to notice that the Newton’s interpolating polynomial possesses its
nonlinear counterpart, i.e., the Thiele’s interpolating continued fraction, which is established
in terms of inverse differences. Like divided differences, inverse differences are defined in a
recursive manner and allow the occurrence of repeated support points. However, implementing
the limit process for inverse differences is much more complicated than for divided differences.
Although both the Thiele’s method and Viscovatov’s method are available for the computation
of the limiting case of inverse differences, they expose the shortcomings that computations have
to be carried out for each step to obtain each convergent.

In this paper, starting from the Newton-Padé approximants, we offer a new kind of deter-
minantal representations for inverse and reciprocal differences which allow the coincidence of
support points. A numerical example is given to support our argument that our method is
more reliable in some cases than the Thiele’s method and Viscovatov’s method.

Suppose f(z) is a function defined on a subset G of the complex plane and X = {z;|i € IN}
is the set of points belonging to G. Let

o f[:c,-,...,xj], fOI'lS']
Cij = { 0, for § > j (1.1)
where f[z;,...,x;] denotes the divided difference of the function f(z) at points z;,...,z;, and
let

wi(z) = (x —xo)(x —x1) - (v — Ti—1) (1.2)
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with wo(xz) = 1, then f(z) can formally be expanded as the following Newton series
f(z) = i Coiwi() (1.3)
It is known to all that one may find two I;Zi)ynomials

Ppn(z) = Z a;w; () (1.4)
i=0

and
such that
f(w)Qmm(x) - Pmm(x) = Z diwi(w)7 (16)
i>m+n+1

which is the very Newton-Padé approximation problem of order (m,n) for f(z) (see [1], [3]
or [9]). It is not difficult to verify that if the rank of the matrix

Com+1 Cimt1 -+ Chmyt
Comt+2 Cimtz -+ Chms2
. . . (1.7)
CO,m+n Cl,m+n e Cn,m+n
is maximal, then P, () and @y, »(x) possess the following determinant representation
Fom(z) Fim(z) - Fym(z)
Com+1 Cimy1 -+ Chmtr
Pun(z)=C Com+2 Cimy2 - Cpme2 (1.8)
CO,m—i—n Cl,m+n e Cn,m+n
wolz) wilz) -+ wyl(z)
CO7m+1 C’1,m+1 Tt Cn,m+1
Qman(z) =C Com+2 Cimyz - Chmy2 (1.9)
CO7m+n Cl,m+n Tt Cn,m+n
where )
oy =] Yiei Cigwr(z), for i <j
Fz:](x) - { 07 ¢ for i >j (110)

and C is some nonzero normalization constant.

2. Thiele’s Continued Fraction

Thiele’s interpolating continued fraction is a continued fraction of the following form (see [7]
and [8])
T — Tp | T — T |

To| + + 2.1
900[ 0] ‘ ()01[:1/'07'7/'1] ‘ @2[:1307',1/'17',1/'2] ( )
where ¢;[zo,z1,...,2;],4 =0,1,2,..., are the inverse differences defined as follows
polz] = flz)
e1lzo, 2] = vo[zll]_gp%[xo] (2.2)
(pk[ilf() T1y. .- .’I,'k] = Tk Th1
e ’ Pl—1[T0, 1,0 Th—2,Tk] =P —1[T0, 1, Th—2,Tk—1]

for every zg,x1,...,2, and z in G.



