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Abstract

This paper is concerned with the numerical solution of delay differential equations(DDEs).
We focus on the error analysis of one-leg methods applied nonlinear stiff DDEs. It is proved
that an A-stable one-leg method with a simple linear interpolation is D-convergent of order
p, if it is consistent of order p in the classical sense.
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1. Introduction

In recent years, many papers discussed numerical methods for the solution of delay differ-
ential equation (DDE)

y'(t) = fty(t),y(t — 7). (1.1)

For linear stability of numerical methods , a significant number of results have already been
found for both Runge-Kutta methods and linear multistep methods (cf.[4] [7] [8]).Recently, we
further established the relationship between G-stability and nonlinear stability (cf.[3]). Error
analysis of DDE solvers is another important issue. In fact, many papers investigated the local
and global error behaviour of DDE solvers (cf.[1] [10]). However, error analysis of numerical
methods for DDEs is mostly based on the fact that the function f(¢,y,z) satisfies Lipschitz
conditions in both the last two variables. They are suitable for nonstiff DDEs because the
Lipschitz constants are moderate. However, they can not be applied to stiff DDEs. For example,
consider semi-discrete Hutchinson’s equation (cf.[2]) with
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(1.2)
where a > 0 is the diffusion coefficient, Az = 1/(N + 1) is a constant stepsize in space. In this
case, the Lipschitz constant L of the function f(¢,y,2) with respect to y will contain negative
powers of the meshwidth Az in space. As a consequence, L will be very large for fine space
grids, and the error estimates based on L are not realistic. On the other hand, the one-sided
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Lipschitz constant « is only moderate. Hence estimates based on « are often considerably more
realistic than that based on L. Recently, the concept of D-convergence [11] for DDEs, which is
a generalization of the concept of B-convergence (cf.[5] [6]) for ODEs, was introduced. In [3], we
discussed D-convergence of A-stable one-leg methods with a complex interpolation procedure .
In this paper, we further discuss D-convergence of A-stable one-leg methods with a more simple
interpolation procedure.

2. Preliminaries

Let (-,-) be an inner product on CV and ||-|| the corresponding norm. Consider the following

nonlinear equation
y'(t) = f(t,y@t),y(t—7)), t>0,
{ y) = oulh, 10, 2.1)

where 7 is a positive delay term , ¢ is a continuous function, and f : [0, +00) x CN xCN — C¥V,
is a given mapping which satisfies the following conditions:

Re<u1 —’U/Q,f(t,ul,'l))—f(t,UQ,U» Sa“ul —U2||2, tZO,Ul,UQ,U GCN7 (22)
||f(t,U,U1) - f(t,U,UQ)” S ﬂ“vl - U2||7 t Z 0,U,U1,’U2 € CN7 (23)

where a and 3 are real constants. In order to make the error analysis feasible, we always assume
that the problem (2.1) has a unique solution y(¢) which is sufficiently differentiable and satisfies

d'y(t)
122 <
Remark 2.1. When g = 0, the above problem class has been used widely in stiff ODEs
field (cf.[6]).
Before stating stability results, we introduce another system, defined by the same function
f(t,u,v), but with another initial condition:

Z’(t) :f(t,Z(t),Z(t—T)), t >0, (2 4)
z(t) = ¢a(t), t<0. )
Proposition 2.2. Suppose 3 < —a. Then the following is true:

ly(t) = 2($)]] < I;lggill%(ﬂ?) — 2(2)|l, >0, (2.5)

The proof of this proposition can be found in [9]. Similarily, we can easily obtain the
following result.
Proposition 2.3. Suppose 8 < —a.. Then the following holds:

Jm ly(#) = z(@)]] = 0. (2.6)

Now we consider the adaptation of one-leg methods to (2.1). We briefly recall the form of
a one-leg method for the numerical solution of the ordinary differential equation

y'(t) = f(t,y(1), t=0,
2.7
i, 27
The one-leg k step method is the following
P(E)yn = hf(o(E)tn, o (E)yn), (2.8)

where h > 0 is the stepsize, E is the translation operator:Ey,, = y,+1, each y,, is an approxi-
k k

mation to the exact solution y(t,) with ¢, = nh, and p(z) = > a;27 and o(z) = 5 Bz’ are
j=0 j=0
generating polynomials, which are assumed to have real coefficients, no common divisor .



