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Abstract

This paper deals with the GPL-stability of the Implicit Runge-Kutta methods
for the numerical solutions of the systems of delay differential equations. We fo-
cus on the stability behaviour of the Implicit Runge-Kutta(IRK) methods in the
solutions of the following test systems with a delay term

y'(t) = Ly(t)+My(t-71), t>0,
y(t) = (1), t<0,
where L, M are N x N complex matrices,r > 0,®(t) is a given vector function. We

shall show that the IRK methods is GPL-stable if and only if it is L-stable,when
we use the IRK methods to the test systems above.
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stability.

1. Introduction

Before dealing with the numerical stabililty analysis of the IRK methods for systems
of DDEs,we consider the following initial value problem

y'(t) = flty(t), t>to, (1)
y(to) = o, (2)

where f is a given function and y(t¢) is unknown for ¢ > .
For the initial problem (1)-(2),consider an Implicit Runge-Kutta method,

v
Kni = hf(tn+ciboyn+ Y aijKny), i=12,...,v, (3)
j=1
v
Yn+1 = UYn +ZblKn,l7 n = 071727"' ) (4)
i=1

where >0 b; = 1,¢; = Z}’Zl aij,1 <1 < v,yp ~ y(tn),ty = to+nh and h > 0 is a
stepsize.
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When we want to analyze the numerical stability of the IRK methods,we focus on
the stability behaviour of the IRK methods with respect to the following linear test
equations

y'(t) = Ay(t), Re(X) <0, (5)
y(to) = o (6)

We get the numerical recurrence formula,(see [7])
Yn+1 = T(B)yna n >0, (7)

r(h) = 1+hb" (I —hA) e
7 T
_ det[Id et[?(fm?b it det(r — ha] 0. (8)

Definition 1.1. (see [7]) Let R(q) be a function of q.

(a) If Re(q) < 0 = |R(q)| < 1,then we say R(q) is A-acceptable;

(b) If g <0 = |R(q)| < 1,then we say R(q) is Ao-acceptable;

(c) If R(q) is A-acceptable and limp. (g, |R(q)| = 0, then we say R(q) is L-
acceptable.

From Definition 1.1, we have the following statements. For the Implicit Runge-
Kutta methods (3)-(4),
(1) it is A-stable if and only if r(h) is A-acceptable;
(2) it is L-stable if and only if r(h) is L-acceptable.

2. The GPL-Stability of the IRK Methods

For the following systems of delay differential equations
y(t) = Ly(t)+ My(t—7), >0, (9)
y(t) = (), t<0, (10)
where y(t) = (y1(t),y2(t), ..., yn(t))T,L and M are constant complex N x N matrices, >

0,®(t) denotes a given vector value function and y(t) is unknown for ¢ > 0.
We counsider the exponential solutions of (9)-(10) in the form

y(t)=¢- e, ¢ech. (11)

We have
Lemma 2.1. (see [5]) The systems (9) has nonzero exponential solutions if and

only if
det[(I — L — Me™°7] = 0. (12)

The equation (12) is called the characteristic equation of (9),and (9) is asymptoti-
cally stable if and only if every root ¢ of (12) satisfies Re(¢) < 0.
Lemma 2.2. (see [5]) Assume that the coefficients of (9) satisfy
1
n(L) = EAmax(L + L") <0, (13)
Ml < (o), (1)

then all roots of the equation (12) have negative real parts and the systems of (9) is
asymptotically stable,i.e. lim;_, o y(t) = 0.



