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Abstract

The dimension of the bivariate spline space ST (A) may depend on geometric
properties of triangulation A, in particular if n is not much bigger than r. In
the paper, the blossom approach to the dimension count is outlined. It leads to
the symbolic algorithm that gives the answer if a triangulation is singular or not.
The approach is demonstrated on the case of Morgan-Scott partition and twice
differentiable splines.
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1. Introduction

Let © C IR? be a closed simply connected polygonal region, and

t
A = {Qi};?:la Q= z'L:Jl QZ

its regular triangulation, i.e. the triangles
Qia Q]u i ?é j7
can have in common only a vertex or a whole edge. Let V denote the set of inner
vertices, E the set of inner edges, and E the set of all edges of A. Put
my = |V|, mg:=|E|.

The planar graph G := (V, E) clearly describes A. However, it’s sometimes useful to
consider also the dual planar graph G := (V,£), where vertices ¢ € V correspond to
triangles €;, and e = (4, j) € &€ iff Q;,(2; share a common edge. Note |V| =t, || = mg,
and there is one-to-one correspondance between E and £. So we shall not make any
difference between e = (i,j) € &, and the common edge of Q;, ; if not neccessary.
In particular, ||e|| will denote the length of the common edge of the corresponding
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triangles, direction of e will be the direction of this common edge etc. There is another
simple relation between G and G, a one to one correspondence between the vertices
v € V, and elementary cycles in G,
Yy = ((i1,92), (i2,43), - - -, (ids td+1))s Gav1 = i1, (ij7ij+1) €g,

the boundaries of facets. Here, d denotes the degree of v. The cycle Y, describes the
connection between the triangles that meet at inner vertex v. G is a planar cubic graph
with my elementary cycles. By Euler’s equation,

mE—mV:t—l. (1.1)
Let m,(IR?) denote the space of polynomial functions of total degree < n, and let

ST(A) = {f1fley € ma(R)} N C(9)

denote the spline space over a regular triangulation A. Quite clearly

dim 7, (R2) = (";2> (1.2)

but the dimension of S (A) may be hard to determine since it might depend on the
geometric properties of the triangulation. One can find a lower bound ([9], [10]) as

dims(a) = )= (") (")) (1.3)

()

n—r
oi=Y (r+j+1—jnm)y, i=12,...,my.

7=1
Here n; denotes the number of edges with different slopes at inner vertex v; € V. A
similar expression for the upper bound can be established also. Particular partitions
show that the lower bound is often very close to actual dimension of the spline space.
As an example, in [3] they can differ only by 1. Also, if n is large enough, i.e. n > 3r+2,
and (1.3) actually gives the required dimension ([4]).

In this paper we will tackle the spline space dimension problem by relations, derived
from the blossoming formulation of the continuity conditions. In order to proceed let us
recall the multiindex notation. Let 7, denote the set of nonnegative integers, and let
small Greek letters denote the multiindex vectors i.e. vectors with nonnegative integer
components. For any multiindices

a:(al,QQ,"',am)EZT, /B:(/B17/827...7/BM)EZT7

and a vector = (£1,%2, -, Tpy) € R™, let
o) :=a1 +ag+ -+ ay, oi=ala!ay!, =2 ad? ez
n!
n .— ) al(n—[a)!’ 0<a, |a| <n,
Q@ 0, otherwise.

Here o < 8 denotes the relation < componentwise i.e. «; < (;, all 7, and further let
a < B be a < with at least one «; < ;. The generalised binomial coefficient is given
by

= { j=1
0, otherwise.

(a), i (5). o<p<a



