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Abstract

This paper deals with the error behaviour and the stability analysis of a class of
linear multistep methods with the Lagrangian interpolation (LMLMs) as applied
to the nonlinear delay differential equations (DDEs). It is shown that a LMLM
is generally stable with respect to the problem of class D, ,, and a p-order linear
multistep method together with a g-order Lagrangian interpolation leads to a D-
convergent LMLM of order min{p, ¢ + 1}.

Key words: D-Convergence, Stability, Multistep methods, Nonlinear DDEs.

1. Introduction

Consider the following nonlinear delay problem

y’(t) = f(t,y(t),y(t - 7')), te [tOJT]7 (11&)
y(t) = (P(t), te [tO - T, to], (llb)
where y : R — CN,7 > 0 is a delay term, f : [t,,T] x CN x CN — CN and ¢(t) :

[to—7,to] — C¥ denotes a given initial function. Thoroughout this paper , the problem
(1.1) is supposed to have a unique solution y(t), which satisfies

1y @) 1< Mi, t€[to—7,T]

here norm || e || is defined by || z ||?=< =,z > (Vo € CV), and M; > 0 are some
constants.
Definition 1.1.lY The class of all delay problems of the form (1.1) with

Re <u—w, f(t,u,d) — f(t,v,4) >< o ||u—wv|? (1.2)
where t € [ty, T],u,,v,o € CN, and constants o, v satisfy
0<vy< -0

is denoted by Dy .
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The following proposition on stability of the problem (1.1) can be inferrded directly
by a result of L. Torelli [,

Proposition 1.1. Suppose the problem (1.1) belongs to the class Dy . Then for
any two solutins y(t) and z(t) of the equation (1.1a) we have

ly(t) —2(t) < max | I o(z) — () |,

x€[to—7,to

where @(t) and 1(t) are the two initial functions corresponding to the solutions y(t), z(t).

Moreover, it is remarkable that H.J.Tian and J.X.Kuang 2/ gave a Theorem on
asymptotic stability of (1.1) with an adaptation to the conditions (1.2)-(1.3).

So far, a lot of results on nonlinear stability and convergence of the numerical
solutions of DDEs have been obtained (cf.[1 —7]). However, these results were achived
under the classical Lipschitz condition except those of the paper [1,6,7], which deal
only with Runge-Kutta methods. In view of what aboves, we study convergence and
stability of a class of variable-coefficient LMLMs for the problem of class D, . and
present some significant results in this paper.

2. The Methods and the Basic Lemmas
Consider variable-coefficient LMLMs (cf.[8]) for (1.1)

k
> ilynsi — B f (tnvis Ynvis ¥ (tnsi — 7)) = 0, (2.1)
i=0
where k is a positive integer; n = 0,1,2,...,N, and (N + k)h < T —to,h > 0 is a
stepsize independent of n; the coefficients «;, §; are real-valued functions of h and there
exists a constant h; > 0 such that for h € (0, hy],

k
ap =1, ;aizoa I’Z%%}giaié(), Il%%;(|ﬁi|§ﬁk<ﬁa (2.2)

where Iy = {0,1,2,...,k—1},8 > 0 is a constant; y, i, y" (tnsi —7) € CV are approxi-
mations to y(t,;) and y(t,,; — ) respectively, and y"(e) is determined by Lagrangian
interpolation

N Z Lj(5)ym+j,t0 <ty + 0h < T,
Yy (tm + 0h) =< j=—r (2.3)
@(tm + 6h), tg — T < tm + 6h < to,
where 6 € [0,1),r, s are positive integers, ¢, = top + mh (m denotes a integer) and
61
Lij(6) = T] (

l=—r

I#j

=7



