A POSTERIORI ERROR ESTIMATES IN ADINI FINITE ELEMENT FOR EIGENVALUE PROBLEMS *1)

Yi-du Yang

(Department of Mathematics, Guizhou Normal University, Guiyang, 550001)

Abstract

In this paper, we discuss a posteriori error estimates of the eigenvalue λ_h given by Adini nonconforming finite element. We give an assymptotically exact error estimator of the λ_h . We prove that the order of convergence of the λ_h is just 2 and the λ_h converge from below for sufficiently small h.

Key words: eigenvalue, nonconforming finite element, error estimate

Consider eigenvalue problems: Find pairs (λ, u) , $\lambda \in R$, $u \in H_0^2(G)$, $||u||_0 = 1$, such that

$$a(u,v) = \lambda(u,v), \quad \forall v \in H_0^2(G)$$
 (1)

and their nonconforming finite element approximations: Find pairs $(\lambda_h, u_h), \lambda_h \in R, u_h \in V_h, ||u_h||_0 = 1$, such that

$$a_h(u_h, v) = \lambda_h(u_h, v), \quad \forall v \in V_h$$
 (2)

where $a(u, v) = \sum \int_G (a_{ijkl}\partial_i\partial_j u\partial_k\partial_l v + a_{pq}\partial_p u\partial_q v)$ is the symmetric, continuous, H_0^2 -elliptic bilinear form, $(u, v) = \int_G uv$; V_h is a nonconforming finit element space associated with a regular triangulations

$$T_h = \{T\}, \ V_h \not\subset H_0^2(G), \ a_h(u, v) = \sum_T \int_T (a_{ijkl} \partial_i \partial_j u \partial_k \partial_l v + a_{pq} \partial_p u \partial_q v)$$

are uniformly V_h -elliptic; i,j,k,l=1,2; p,q=0,1,2; $\partial_1 = \frac{\partial}{\partial x}$, $\partial_2 = \frac{\partial}{\partial y}$, $\partial_0 = id$, $\partial_1 \partial_2 = \frac{\partial^2}{\partial x \partial y}$.

Let (λ_h, u_h) and (λ, u) be an eigenpair of (2) and of (1), respectivery, and (λ_h, u_h) converge (λ, u) . In [3], the abstract error estimates has been presented and the following estimates has been proved for Adini finite element:

$$|\lambda_h - \lambda| \le Ch^2 \tag{3}$$

^{*} Received May 20, 1997.

¹⁾ The Project supported by National Natural Science Foundation of China.

414 Y.D. YANG

In this paper ,we discuss a posteriori error estimates .We prove that the order of convergence is just 2, and give an asymptotically exact estimator for Adini finite element. Consider the steady state problems: Find $w \in H_0^2(G)$, such that

$$a(w,v) = (f,v), \quad \forall v \in H_0^2(G)$$
(4)

In the case of $f \equiv u_h$, let u^* and $u_h^* \in V_h$ denote the exact solution and nonconforming finite element solution, respectively. It is obvious that $u_h^* \equiv \lambda_h^{-1} u_h$.

Lemma 1. The following estimates hold

$$\frac{\lambda_h - \lambda}{\lambda} = \frac{\lambda_h}{(u, u_h)} (u^* - u_h^*, u) \tag{5}$$

$$||u_h - u||_s \le C||u^* - u_h^*||_s, \quad s = 0, 1$$
 (6)

Proof. Let P_{λ} be the orthogonal projection operator of the $L_2(G)$ onto eigenspace V_{λ} corresponding to the eigenvalue λ . Taking $u = \frac{P_{\lambda} u_h}{\|P_{\lambda} u_h\|_0}$.

$$(u^{\star} - u_h^{\star}, u) = (u^{\star} - \lambda_h^{-1} u_h, u) = \lambda^{-1} (u_h, u) - \lambda_h^{-1} (u_h, u)$$
$$= (\lambda^{-1} - \lambda_h^{-1}) (u_h, u)$$

which is just (5). The proof of the (6) is the same as that of [5, (1.4)].

In the case of $f \equiv \lambda u$, it is obvious that the exact solution of the associated (4) is just u and nonconforming finite element solution $u_h^0 \in V_h$ satisfies

$$a_h(u_h^0, v) = \lambda(u, v), \quad \forall v \in V_h$$
 (7)

Lemma 2. The following inequality holds

$$||u_h - u||_h \le ||u_h^0 - u||_h + C||\lambda_h u_h - \lambda u||_0$$
(8)

Proof. From (2) and (7) we have

$$a_h(u_h - u_h^0, v) = (\lambda_h u_h - \lambda u, v)$$

Taking $v=u_h-u_h^0$, we get by uniformly elliptic

$$||u_h - u_h^0||_h^2 \leq Ca_h(u_h - u_h^0, u_h - u_h^0) \leq C||\lambda_h u_h - \lambda u||_0 ||u_h - u_h^0||_0$$

and hence

$$||u_h - u_h^0||_h \le C||\lambda_h u_h - \lambda u||_0$$

using the above inequality and the triangle inequality we obtain (8).