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Abstract

A mixed finite element method is developed to approximate the solution of a
strongly nonlinear second-order parabolic problem. The existence and uniqueness
of the approximation are demonstrated and L?-error estimates are established for
both the scalar function and the flux. Results are given for the continuous-time
case.
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1. Introduction

For second order elliptic problems, the mixed method was described and analyzed
by many authors 3! in the case of linear equations in divergence form, as well as in
[4, 5] for quasilinear or nonlinear problems in divergence form. Johnson and Thoméel®!
considered alternative proofs of the previously known error estimates for such meth-
ods in the elliptic case. They also analyzed the mixed finite element method for the
parabolic equation given by p; — Ap = f. Garcial”) studied the convergence of mixed
finite element approximations to quasilinear parabolic equations in the continuous-time
case and derived the superconvergent estimates for the difference between the approx-
imate solution and the projection.

In this paper we consider a mixed finite element for approximating the pair (u,p)
satisfying second-order, strongly nonlinear parabolic equation

u(z,t) = —a(z, Vp),

. €N, teJ, 1.1
e, ppi(a,t) + divu(a, ) = f(e,p,t), (L)
subject to the following conditions:

p(z,0) = po(x), z€eQ, t=0,

p(z,t) = —g(z,1), (z,1) € 0 x J, (1.2)

where  C R? is a bounded, convex domain with C?-boundary 9Q, and J = [0, 7],
a:QxR? — R? is cubic continuously differentiable with bounded derivatives through
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third order and has a bounded positive definite Jacobian with respect to the second
argument, which implies that Vp can be locally represented as a function of the flux,
say

Vp = —b(u). (1.3)

We shall assume that this representation is global, and that u € H7/2t¢0(Q)2nC%'(Q)?,
go > 0. Furthermore, assume that the domain of definition of b contains a ball By
centered at u in L (Q)5).

The functions ¢(x,v), f = f(z,v,t), and g = g(z,t) are continuously differentiable
with respect to v and . Moreover, there exist constants c,, ¢* and K such that, for all
reQ, teJ,and v €R,

0< ¢, <c(z,v) <, (1.4)
Oc| 10f (0f 0g
Ll 5] 500 15l 15 ] < & (1.5)

We also assume that the solution {u, p} for (1.1)—(1.2) has sufficiently smooth regularity.

2. Formulation of the Mixed Method

Now we let V = H(div; Q) = {v € L2(Q)%: divw € L?()}, W = L?(Q2). Combining
(1.1), (1.2), and (1.3), we arrive at the mixed weak form of (1.1)—(1.2): (u,p) € V.xW
is the solution of the system

(b(u)vv) - (diVU,p) = (g,U ’ ’I’L), CAS Va (21)
(c(p)pe, w) + (divu, w) = (f(p), w), w e W,
and p(x,0) = pg, where n is the unit exterior normal vector on 99, (-, -) and (-, -) denote,
respectively, the L2(Q)-inner product and the L2(9€2)-inner product. We consider the
Raviart-Thomas!! space V;, x W), C V x W of index k > 0 associated with quasiregular
partition T}, of Q by triangles or quadrilaterals, with boundary elements allowed to have

one curved side. The mixed finite element method we shall analyzed is the discrete form
of (2.1)-(2.2) and is given by: Find (up,pn) € Vi, x W}, such that p,(0) = P(0),

(b(up),v) — (dive,pg) = (g,v - n), v € V), (2.3)
(c(pp)pnt, w) + (divup, w) = (f(pr), w), w € Wy,

where P(0) is the elliptic mixed method projection (to be defined below) into the finite
dimensional space W}, of the inital data function py.

3. Mixed Method Projection

For introducing an elliptic projection®!, we shall assume that the following boundary
value problem

—div(a(Vz)) = f(p) — c(p)pt, in
z=—g, on 0f), (3.1)



