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Abstract

In this paper, the partial projection finite element method is applied to the
time-dependent, problem—the damped vibrating Timoshenko beam model. Tt is
proved that this method allows some new combinations of interpolations for stress
and displacement fields. When assuming that a smooth solution exists, we obtain
optimal convergence rates with constants independent of the beam thickness.
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1. Introduction

The Timoshenko beam model is given by

Oy +d 20 —wy) =0 on I,
{ diQ(e — wg)z = g() on I,
0(0) =6(1) =w(0) =w(l) =0

where the beam is considered damped, d represents the beam thickness and I = [0, 1].
f(x) is the rotation of vertical fibers in the beam and w(x) is the vertical displacement
of the beam’s centerline(under a vertical load given by g(z)).

Analogous to the situation one would meet in studying the Reissner—Mindlin plate
model, the standard finite element methods fail to give good approximation when the
beam thickness is too small, owing to a ”locking” phenomenon. Instead, mixed meth-
ods, based on the introduction of the shear term as a new variable, have proved to be
successful([1],[8],etc.). D.N. Arnold[1] studied the discretization with emphasis on the
effect of the beam thickness and used a mixed finite element method reduced integra-
tion approach. He obtained optimal-order error estimates with constants independent
of the beam thickness.

On the baisis of [11], B.Semper considered the following time-dependent vibrating
beam equations

O + 00y — Opy +d2(0 — wy) = on I x (0,71,

wi + 0w +d %0 — wy)z = g(x,t) on I x (0,77,

0(0) =6(1) = w(0) = w(l) =0, vt e [0,T], (1.1)
H(T,O) = eﬂ(z)aet(mao) = 91(1'), Vo e,

w(1,0) = wo(#), n(1,0) = wr(a), Vel
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Where ¢ represents a damping constant.

B.Semper discussed some semi-discrete and fully discrete approximations for this
model.Following Arnold’s idea, he also obtained optimal-order error estimates with
constants independent of the beam thickness under the assumption of the regularity of
the solution of (1.1), which we will derive in this paper(see Theorem 3.1).

As we have known, in studying of the Reissner Mindlin plate model, Prof. Zhou
Tianxiao [15] proposed a new mixed method:PPM-Partial projection method of finite
element discretizations, which has attracted more and more researchers’ interest[2,7].In
comparison with Galerkin formulations, this method enhanced stability and is promis-
ing for the plate and shell problems. In this paper, we extend the idea of PPM to the
time-dependent problem. Semi-discrete and fully discrete schemes are proposed for the
vibrating beam model (1.1). As desired, this method allows some new combinations of
interpolations for stress and displacement fields, and, when assuming a smooth solu-
tion, we obtain optimal-order error estimates with constants independent of the beam
thickness .

We now give the arrangements of this paper.In section 2 some notations are collected
and variational formulations are presented.In section 3 a prioi estimates are derived 3.In
the following section new variational formulations are given. In the last two sections
semi-discrete approximations and fully discrete approximations are considered and their
convergence are analysed .

Throughout this paper we denote by C a constant independent of h and d, which
may be different at its each occurrence.

2. Notations and the Original Variational Formulations

At first we introduce some notations. We will use the standard notations for the
Sobolev spaces H” and H{ with norm || - ||, with H® = L2.The L%inner product is
denoted by

1
(f,9) :/0 f(x)g(z)dx.

Furthermore we denote the dual space of H™" by H". For any vectors ¥ =<
1,19 >, ® =< ¢y, o >€ [H"]?, we interpret

(\Ilu Q)) = (¢1, ¢1) + (1/}27 ¢2)7
NO[17 = (T, 9), = (1, 91)r + (P2, 92)r = [[91][7 + [192]17,

(here (-,-), represents the [H"]?—inner product).We also define the following bilinear
forms (for abbreviation, we denote H}(I) = H¢, L?(I) = L? in what follows):

For < U, ® >€ [Hy|* x [Hj]*, a(¥, @) = ((¢1)a, (¢1)0);

For < U, >€ [Hy]? x L?, b(n, ®) = (0,1 — (2)q),

For < W, ® >€ [Hg|* x [Ho[*, c(¥,®) = (1 — (2)a, b1 — (¢2)a),

Given any Banach space V' with norm || - ||y, for any v : [0,7] — V which is
Lebesgue integrable, we define the norms

T
Il = ([ G 0IR ", p=1,2



