Journal of Computational Mathematics, Vol.17, No.4, 1999, 441-448.

THE STABILITY OF THE θ -METHODS FOR DELAY DIFFERENTIAL EQUATIONS*

Jing-jun Zhao, Ming-zhu Liu

(Department of mathematics, Harbin Institute of Technology, Harbin 150001, China)

Shen-shan Qiu

(Department of Computer Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

This paper deals with the stability analysis of numerical methods for the solution of delay differential equations. We focus on the behaviour of three θ -methods in the solution of the linear test equation $u'(t) = A(t)u(t) + B(t)u(\tau(t))$ with $\tau(t)$ and A(t), B(t) continuous matrix functions. The stability regions for the three θ -methods are determined.

Key words: Delay differential equations, Numerical solution, Stability, θ -methods.

1. Introduction

1.1. The three θ -methods

We deal with the numerical solution of the initial value problem:

$$\begin{cases} u'(t) = f(t, u(t), u(\tau(t))), & t > t_0, \\ u(t) = u_0(t), & t \le t_0. \end{cases}$$
(1.1)

Here f, u_0, τ denote given functions with $\tau(t) \leq t$, whereas u(t) is unknown (for $t > t_0$). With the so-called one-leg θ -method, linear θ -method and new θ -method, one can compute approximations u_n to u(t) at the gridpoint $t_n = t_0 + nh$, where h > 0 denotes the stepsize and $n = 1, 2, 3, \cdots$.

The one-leg θ -method was considered in [1, 2, 3, 4]

$$u_{n+1} = u_n + hf(\theta t_{n+1} + (1-\theta)t_n, \theta u_{n+1} + (1-\theta)u_n, u^h(\tau(\theta t_{n+1} + (1-\theta)t_n))), \quad n \ge 0$$
(1.2a)

where θ is a parameter, with $0 \le \theta \le 1$ specifying the method.

Further we define $u^h(t)$ as follows:

$$u^{h}(t) = u_{0}(t), \quad t \leq t_{0},$$

$$u^{h}(t) = \frac{t_{n+1} - t}{h} u_{n} + \frac{t - t_{n}}{h} u_{n+1}, \quad t \in (t_{n}, t_{n+1}], \quad n \geq 0.$$

^{*} Received October 12, 1997.

The linear θ -method to problem of type (1.1) gives rise to the following formula

$$u_{n+1} = u_n + h\{\theta f(t_{n+1}, u_{n+1}, u^h(\tau(t_{n+1}))) + (1-\theta)f(t_n, u_n, u^h(\tau(t_n)))\}, \quad n \ge 0,$$
((1.2b))

which was considered in [1, 2, 4-7].

Finally, we consider the new θ -method as follows:

$$u_{n+1} = u_n + hf(\theta t_{n+1} + (1-\theta)t_n, \theta u_{n+1} + (1-\theta)u_n, \\ \theta u^h(\tau(t_{n+1})) + (1-\theta)u^h(\tau(t_n))), \quad n \ge 0,$$
(1.2c)

which was considered in [1].

1.2. The test problem

Consider the test problem

$$\begin{cases} u'(t) = A(t)u(t) + B(t)u(\tau(t)), & t \ge t_0, \\ u(t) = u_0(t), & t \le t_0. \end{cases}$$
(1.3)

Here $A, B : [t_0, \infty) \to C^{d \times d}$ $(d \ge 1), t - \tau(t) \ge \tau_0$ $(t \ge t_0), \tau_0$ is a positive constant, $u_0(t)$ is a known complex function for $t \le t_0$.

Applying (1.2a), (1.2b), (1.2c) to (1.3) we have the following recurrence relations:

$$(I - \theta x(t_{n+\theta}))u_{n+1} = (I + (1 - \theta)x(t_{n+\theta}))u_n + \delta(t_{n+\theta})y(t_{n+\theta})u_{n-m(t_{n+\theta})+1} + (1 - \delta(t_{n+\theta}))y(t_{n+\theta})u_{n-m(t_{n+\theta})}, \quad (n \ge m),$$
(1.4a)

Here

$$\delta(t_{n+\theta}) = \frac{\tau(t_{n+\theta})}{h} - r(t_{n+\theta}),$$

$$r(t_{n+\theta}) = \left[\frac{\tau(t_{n+\theta})}{h}\right], \quad \delta(t_{n+\theta}) \in [0, 1),$$

$$m(t_{n+\theta}) = n - r(t_{n+\theta}), t_{n+\theta} = t_n + \theta h,$$

$$x(t) = hA(t), \quad y(t) = hB(t).$$

$$(I - \theta x(t_{n+1}))u_{n+1} = (I + (1 - \theta)x(t_n))u_n + \theta y(t_{n+1})(\delta(t_{n+1})u_{n+2-m(t_{n+1})}) + (1 - \delta(t_{n+1}))u_{n+1-m(t_{n+1})}) + (1 - \theta)y(t_n)(\delta(t_n)u_{n+1-m(t_n)}) + (1 - \delta(t_n))u_{n-m(t_n)}), \quad n \ge m$$
(1.4b)

 and

$$(I - \theta x(t_{n+\theta}))u_{n+1} = (I + (1 - \theta)x(t_{n+\theta}))u_n + \theta y(t_{n+\theta})(\delta(t_{n+1})u_{n+2-m(t_{n+1})}) + (1 - \delta(t_{n+1}))u_{n+1-m(t_{n+1})}) + (1 - \theta)y(t_{n+\theta})(\delta(t_n)u_{n+1-m(t_n)}) + (1 - \delta(t_n))u_{n-m(t_n)}), \quad n \ge m.$$
(1.4c)

Here, $\delta(t) = \frac{\tau(t)}{h} - r(t), r(t) = \left[\frac{\tau(t)}{h}\right], \ 0 \le \delta(t) < 1, \ m(t) = \frac{t}{h} - r(t).$