Journal of Computational Mathematics, Vol.17, No.5, 1999, 457-462.

RELATIONS BETWEEN TWO SETS OF FUNCTIONS DEFINED BY THE TWO INTERRELATED ONE-SIDE LIPSCHITZ CONDITIONS^{*1)}

Shuang-suo Zhao

(Department of Mathematics, Lanzhou University, Lanzhou 730000, China)

Chang-yin Wang (Communication center, Department of Communications, Gansu Province, Lanzhou 730030, China)

Guo-feng Zhang

(Department of Mathematics, Lanzhou University, Lanzhou 730000, China)

Abstract

In the theoretical study of numerical solution of stiff ODEs, it usually assumes that the righthand function f(y) satisfy one-side Lipschitz condition

 $< f(y) - f(z), y - z \ge \nu' ||y - z||^2, f : \Omega \subseteq C^m \to C^m,$

or another related one-side Lipschitz condition

 $[F(Y) - F(Z), Y - Z]_D \le \nu'' ||Y - Z||_D^2, F : \Omega^s \subseteq C^{ms} \to C^{ms},$

this paper demonstrates that the difference of the two sets of all functions satisfying the above two conditions respectively is at most that $\nu' - \nu''$ only is constant independent of stiffness of function f.

Key words: Stiff ODEs, One-side Lipschitz condition, Logarithmic norm.

In the theoretical study of numerical solution of stiff ODEs, authors usually assume that the righthand function f of

$$y'(t) = f(y(t)), \quad y(t_0) = y_0, \quad t \in [t_0, T], \quad f : \Omega \subseteq C^m \to C^m,$$
 (1)

satisfy the one-side Lipschitz condition^[1,2,3]

$$< f(y) - f(z), y - z \ge \nu ||y - z||^2, \forall y, z \in \Omega,$$
 (2)

^{*} Received February 27, 1995.

¹⁾Supported by the national natural science foundation.

however, in some cases (such as study of existence and uniqueness of the solution), the function f is assumed to satisfy another one-side Lipschitz condition

$$[F(Y) - F(Z), Y - Z]_D \le \nu ||Y - Z||_D^2,$$
(3)

where Ω is a convex domain in C^m , $Y = (y_1^T, y_2^T, \dots, y_s^T)^T \in \Omega^s := \overbrace{\Omega \times \Omega \times \dots \times \Omega}^{s \text{ times}}$, $F(Y) = (f^T(y_1), f^T(y_2), \dots, f^T(y_s))^T, < \cdot, \cdot > \text{ is an inner-product in } C^m, \|\cdot\| \text{ is the corresponding norm, } D = (d_{ij}) \text{ is a s-by-s Hermite positive definite matrix, } [F(Y), Z]_D = \sum_{i,j=1}^s d_{ij} < f(y_i), z_j >, \|\cdot\|_D \text{ is the corresponding norm.}$

Definition:

$$\mathcal{F}_1(\nu) = \{f(y) \mid Re < f(y) - f(z), y - z \ge \nu \|y - z\|^2, \ f'(y) \ is \ existed, \forall y, z \in \Omega\},$$

$$\mathcal{F}_2(\nu) = \{f(y) \mid Re[F(Y) - F(Z), Y - Z]_D \le \nu \|Y - Z\|_D^2, f'(y) \ is \ existed, \forall Y, Z \in \Omega^s\},$$

where $f'(y)$ is a Frechet-derivative of $f(y)$ with respect to y . Up to date, there is no

where f'(y) is a Frechet-derivative of f(y) with respect to y. Up to date, there is no result for the relation of $\mathcal{F}_1(\nu)$ and $\mathcal{F}_2(\nu)$. The goal of this paper is to investigate this problem.

Theorem 1. If D is a diagonally positive definite matrix, then

$$\mathcal{F}_1(\nu) = \mathcal{F}_2(\nu).$$

Proof. For $\forall f(y) \in \mathcal{F}_2(\nu)$, it follows from the definition that

$$Re\sum_{i=1}^{s} d_{ii} < f(y_i) - f(z_i), y_i - z_i > = Re[F(Y) - F(Z), Y - Z]_D \le \nu ||Y - Z||_D^2,$$
(4)

if $f(y) \notin \mathcal{F}_1(\nu)$, then there exist $y, z \in \Omega$ such that

$$Re < f(y) - f(z), y - z >> \nu ||y - z||^2.$$

Let $Y = (y^T, y^T, \cdots, y^T)^T$ and $Z = (z^T, z^T, \cdots, z^T)^T \in \Omega^s$, then

$$Re\sum_{i=1}^{s} d_{ii} < f(y) - f(z), y - z >> \nu ||Y - Z||_{D}^{2}.$$

That is conflict with (4), so $\mathcal{F}_2(\nu) \subseteq \mathcal{F}_1(\nu)$. On the other hand, it is obvious that $\mathcal{F}_1(\nu) \subseteq \mathcal{F}_2(\nu)$. Therefore, $\mathcal{F}_1(\nu) = \mathcal{F}_2(\nu)$.

Theorem 2. Assume that the D be a Hermite positive definite matrix and $f(y) = By + \hat{B}$ be a linear function, then $f \in \mathcal{F}_1(\nu) \iff f \in \mathcal{F}_2(\nu)$.

Proof. For the inner-products $\langle \cdot, \cdot \rangle$ and standard inner-product $(y, z) = y^* z$ in C^m , there exists a Hermite positive definite matrix Q such that

$$\langle y, z \rangle = (y, Qz), \quad \forall y, z \in C^m.$$