RELATIONS BETWEEN TWO SETS OF FUNCTIONS DEFINED BY THE TWO INTERRELATED ONE-SIDE LIPSCHITZ CONDITIONS*1)

Shuang-suo Zhao
(Department of Mathematics, Lanzhou University, Lanzhou 730000, China)
Chang-yin Wang
(Communication center, Department of Communications, Gansu Province, Lanzhou 730030, China)
Guo-feng Zhang
(Department of Mathematics, Lanzhou University, Lanzhou 730000, China)

Abstract

In the theoretical study of numerical solution of stiff ODEs, it usually assumes that the righthand function $f(y)$ satisfy one-side Lipschitz condition $$
<f(y)-f(z), y-z>\leq \nu^{\prime}\|y-z\|^{2}, f: \Omega \subseteq C^{m} \rightarrow C^{m}
$$ or another related one-side Lipschitz condition $$
[F(Y)-F(Z), Y-Z]_{D} \leq \nu^{\prime \prime}\|Y-Z\|_{D}^{2}, F: \Omega^{s} \subseteq C^{m s} \rightarrow C^{m s}
$$ this paper demonstrates that the difference of the two sets of all functions satisfying the above two conditions respectively is at most that $\nu^{\prime}-\nu^{\prime \prime}$ only is constant independent of stiffness of function f.

Key words: Stiff ODEs, One-side Lipschitz condition, Logarithmic norm.

In the theoretical study of numerical solution of stiff ODEs, authors usually assume that the righthand function f of

$$
\begin{equation*}
y^{\prime}(t)=f(y(t)), \quad y\left(t_{0}\right)=y_{0}, \quad t \in\left[t_{0}, T\right], \quad f: \Omega \subseteq C^{m} \rightarrow C^{m} \tag{1}
\end{equation*}
$$

satisfy the one-side Lipschitz condition ${ }^{[1,2,3]}$

$$
\begin{equation*}
<f(y)-f(z), y-z>\leq \nu\|y-z\|^{2}, \forall y, z \in \Omega \tag{2}
\end{equation*}
$$

[^0]however, in some cases(such as study of existence and uniqueness of the solution), the function f is assumed to satisfy another one-side Lipschitz condition
\[

$$
\begin{equation*}
[F(Y)-F(Z), Y-Z]_{D} \leq \nu\|Y-Z\|_{D}^{2} \tag{3}
\end{equation*}
$$

\]

where Ω is a convex domain in $C^{m}, Y=\left(y_{1}^{T}, y_{2}^{T}, \cdots, y_{s}^{T}\right)^{T} \in \Omega^{s}:=\overbrace{\Omega \times \Omega \times \cdots \times \Omega}^{s \text { times }}$, $F(Y)=\left(f^{T}\left(y_{1}\right), f^{T}\left(y_{2}\right), \cdots, f^{T}\left(y_{s}\right)\right)^{T},\langle\cdot, \cdot\rangle$ is an inner-product in $C^{m},\|\cdot\|$ is the corresponding norm, $D=\left(d_{i j}\right)$ is a s-by-s Hermite positive definite matrix, $[F(Y), Z]_{D}=$ $\sum_{i, j=1}^{s} d_{i j}<f\left(y_{i}\right), z_{j}>,\|\cdot\|_{D}$ is the corresponding norm.

Definition:

$$
\begin{gathered}
\mathcal{F}_{1}(\nu)=\left\{f(y) \mid \operatorname{Re}<f(y)-f(z), y-z>\leq \nu\|y-z\|^{2}, f^{\prime}(y) \text { is existed, } \forall y, z \in \Omega\right\}, \\
\mathcal{F}_{2}(\nu)=\left\{f(y) \mid \operatorname{Re}[F(Y)-F(Z), Y-Z]_{D} \leq \nu\|Y-Z\|_{D}^{2}, f^{\prime}(y) \text { is existed, } \forall Y, Z \in \Omega^{s}\right\},
\end{gathered}
$$

where $f^{\prime}(y)$ is a Frechet-derivative of $f(y)$ with respect to y. Up to date, there is no result for the relation of $\mathcal{F}_{1}(\nu)$ and $\mathcal{F}_{2}(\nu)$. The goal of this paper is to investigate this problem.

Theorem 1. If D is a diagonally positive definite matrix, then

$$
\mathcal{F}_{1}(\nu)=\mathcal{F}_{2}(\nu)
$$

Proof. For $\forall f(y) \in \mathcal{F}_{2}(\nu)$, it follows from the definition that

$$
\begin{equation*}
\operatorname{Re} \sum_{i=1}^{s} d_{i i}<f\left(y_{i}\right)-f\left(z_{i}\right), y_{i}-z_{i}>=\operatorname{Re}[F(Y)-F(Z), Y-Z]_{D} \leq \nu\|Y-Z\|_{D}^{2} \tag{4}
\end{equation*}
$$

if $f(y) \notin \mathcal{F}_{1}(\nu)$, then there exist $y, z \in \Omega$ such that

$$
R e<f(y)-f(z), y-z \gg \nu\|y-z\|^{2} .
$$

Let $Y=\left(y^{T}, y^{T}, \cdots, y^{T}\right)^{T}$ and $Z=\left(z^{T}, z^{T}, \cdots, z^{T}\right)^{T} \in \Omega^{s}$, then

$$
\operatorname{Re} \sum_{i=1}^{s} d_{i i}<f(y)-f(z), y-z \gg \nu\|Y-Z\|_{D}^{2}
$$

That is conflict with (4), so $\mathcal{F}_{2}(\nu) \subseteq \mathcal{F}_{1}(\nu)$. On the other hand, it is obvious that $\mathcal{F}_{1}(\nu) \subseteq \mathcal{F}_{2}(\nu)$. Therefore, $\mathcal{F}_{1}(\nu)=\mathcal{F}_{2}(\nu)$.

Theorem 2. Assume that the D be a Hermite positive definite matrix and $f(y)=$ $B y+\hat{B}$ be a linear function, then $f \in \mathcal{F}_{1}(\nu) \Longleftrightarrow f \in \mathcal{F}_{2}(\nu)$.

Proof. For the inner-products $\left\langle\cdot, \cdot>\right.$ and standard inner-product $(y, z)=y^{*} z$ in C^{m}, there exists a Hermite positive definite matrix Q such that

$$
<y, z>=(y, Q z), \quad \forall y, z \in C^{m}
$$

[^0]: * Received February 27, 1995.
 ${ }^{1)}$ Supported by the national natural science foundation.

