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Abstract

In this paper, a linearized three-level difference scheme is derived for the mixed
boundary value problem of Kuramoto-Tsuzuki equation, which can be solved by
double-sweep method. It is proved that the scheme is uniquely solvable and second
order convergent in energy norm.

1. Introduction

Tsertsadze[1] studied the finite difference method for the mixed boundary value
problem of Kuramoto-Tsuzuki equation
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w(x, 0) = w0(x), 0 ≤ x ≤ 1 (1.3)

where c1 and c2 are real constants, w(x, t) and w0(x) complex valued functions.
Divide [0, 1] intoM subintervals and [0, T ] into K subintervals with meshsizes h and τ

respectively. Tsertsadze[1] constructed for (1.1)-(1.3) the following difference scheme
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w0
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where xj = jh, tk = kτ, wk
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scheme is convergent in energy norm with the convergence rate of order O(h3/2) when
τ = O(h2+ε) (ε > 0). (2) is nonlinear.

In this paper, for generality, we consider inhomogeneous equation. In other words,
instead of (1.1), we consider
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where f(x, t) is a known complex valued smooth function. We develop for (1.1’) and
(1.2)-(1.3) the difference scheme
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The scheme (3) is a tridiagonal system of linear algebraic equations, which can be
solved by double-sweep method. We suppose τ = αh

1
4
+ε, where α and ε are any two

positive constants. In next two sections, we will prove that (3) is uniquely solvable and
convergent in energy norm with convergence rate of order O(τ2 +h2). Farthermore, we
will see that the optimal choice is ε = 3/4 or τ = O(h).
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2. Solvability

Theorem 1. The difference scheme (3) is uniquely solvable.


