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Abstract

In this paper, a linearized three-level difference scheme is derived for the mixed
boundary value problem of Kuramoto-Tsuzuki equation, which can be solved by
double-sweep method. It is proved that the scheme is uniquely solvable and second

order convergent in energy norm.

1. Introduction

Tsertsadzell) studied the finite difference method for the mixed boundary value

problem of Kuramoto-Tsuzuki equation
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where ¢; and ¢y are real constants, w(z,t) and wy(x) complex valued functions.
Divide [0, 1] intoM subintervals and [0,7] into K subintervals with meshsizes h and 7
respectively. Tsertsadzel!l constructed for (1.1)-(1.3) the following difference scheme
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where x; = jh,t, = kT, w? the approximation of w(x;,1), wj+2 = (ﬂu}?Jrl + wf)/2,
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5twj+2 = (wf“—wf)/r, 5310;-“ = (wf+1—2wf+w§_1)/h2 and proved that the difference

scheme is convergent in energy norm with the convergence rate of order O(h3/ 2) when
7= O(h?*T) (¢ > 0). (2) is nonlinear.

In this paper, for generality, we consider inhomogeneous equation. In other words,
instead of (1.1), we consider
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where f(z,t) is a known complex valued smooth function. We develop for (1.1") and
(1.2)-(1.3) the difference scheme
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The scheme (3) is a tridiagonal system of linear algebraic equations, which can be
solved by double-sweep method. We suppose 7 = ahi“, where o« and ¢ are any two
positive constants. In next two sections, we will prove that (3) is uniquely solvable and
convergent in energy norm with convergence rate of order O(72 + h?). Farthermore, we
will see that the optimal choice is € = 3/4 or 7 = O(h).

Let u = {uj}jj\io be a net function on I = {x;}

j—0, define the Ly norm
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2. Solvability

Theorem 1. The difference scheme (3) is uniquely solvable.



