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Abstract

We discuss the Hermite-type collocation method for the solution of Volterra

integral equation with weakly singular kernel. The constructed approximation is

a cubic spline in the continuity class C1. We prove that this method is convergent

with order of four.

1. Introduction

This paper considers the numerical solution of the second-kind Volterra integral

equation

y(t) + (Ky)(t) = g(t), (1.1)

where y(t) is the unknown solution, g(t) is a given function and K is the integral

operator for some given kernel function K,

(Ky)(t) =

∫ t

0
K(

t

s
)y(s)

1

s
ds. (1.2)

Such equations arise from certain diffusion problems. Because K is not compact, so

the standard stability proofs for numerical methods do not fit.

Many people have worked on Hermite-type collocation methods for second-kind

Volterra integral equations with smooth kernels[3,4,5,6], but very few deal with weakly

singular kernels. Papatheodorou & Jesanis (1980) considered Volterra integro-

differential equations with weakly singular kernels. Diogo, Mckee & Tang (1991) in-

vestigated a Hermite-type collocation method for (1.1) with a singular kernel of the

form K(σ) = 1√
π
√

ℓnσσµ
, µ > 1. They also considered two low-order product integration

methods for the solution of (1.1) with a singular kernel of the formK(σ) = 1√
π
√

ℓnσσµ

[10]
.

For general kernel K(σ), no papers have appeared to discuss it.
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In this paper, first we would to show that a unique smooth solution exists when

α =
∫ ∞
1

|K(σ)|
σ

dσ < 1. The basic idea is to derive two (linear) Volterra equations for y(t)

and y′(t) by transforming the original integral equation. Having the coupled equations

for both y(t) and y′(t), we can then employ piecewise cubic Hermite polynomials to

obtain numerical solution of (1.1). Finally, the convergence analysis is given.

2. Preliminaries

Let Cm[0.T ] denote the Banach space of mth order derivative continuous real-valued

functions with the uniform norm

|| u ||m,∞= max
0≤j≤m

max
0≤t≤T

|u(j)(t)|.

Our assumption on K is

α =

∫ ∞

1

| K(σ) |
σ

dσ < 1. (2.1)

Lemma 1. If g ∈ Cm[0, T ] and (2.1) is satisfied, then (1.1) possesses a unique

solution y ∈ Cm[0, T ].

Proof: Choosing an arbitrary function v(t) ∈ Cm[0, T ], and defining u = S(v) such

that

u(t) +

∫ t

0
K(

t

s
)v(s)

1

s
ds = g(t), t ∈ [0, T ] (2.2)

where S(v) = −
∫ t
0 K( t

s
)v(s)1

s
ds+ g(t).

Setting s = λt we have

∫ t

0
K(

t

s
)v(s)

1

s
ds =

∫ 1

0
K(

1

λ
)v(λt)

1

λ
dλ . (2.3)

Since v ∈ Cm[0, T ] and g ∈ Cm[0, T ], we obtain from (2.2) and (2.3) that

u(j)(t) = −
∫ 1

0
K(

1

λ
)v(j)(λt)λj−1dλ+ g(j)(t), (2.4)

where 0 ≤ j ≤ m. If u1 = S(v1) and u2 = S(v2), we have

|u(j)
1 − u

(j)
2 | ≤

∫ 1
0 |K( 1

λ
)|λj−1|v(j)

1 (λt) − v
(j)
2 (λt)|dλ

≤
∫ 1
0 |K( 1

λ
)|λ−1dλ· || v1 − v2 ||m,∞ .

(2.5)

Noting that the coefficient of the last term of (2.5) equals α, it follows that

|| u1 − u2 ||m,∞≤ α || v1 − v2 ||m,∞ . (2.6)

The inequality (2.6) implies that the operator S is a contraction mapping. Since Cm

is a complete normed space, S has a unique fixed point y(t) ∈ Cm[0, T ] such that

y = S(y). This completes the proof.


