# HERMITE-TYPE METHOD FOR VOLTERRA INTEGRAL EQUATION WITH CERTAIN WEAKLY SINGULAR KERNEL*1) 

G.Q. Han<br>(Department of Computer Science, South China University of Technology, Guangzhou, China)<br>L.Q. Zhang<br>(Automation Department, South China University of Technology, Guangzhou, China)


#### Abstract

We discuss the Hermite-type collocation method for the solution of Volterra integral equation with weakly singular kernel. The constructed approximation is a cubic spline in the continuity class $\mathrm{C}^{1}$. We prove that this method is convergent with order of four.


## 1. Introduction

This paper considers the numerical solution of the second-kind Volterra integral equation

$$
\begin{equation*}
y(t)+(K y)(t)=g(t) \tag{1.1}
\end{equation*}
$$

where $y(t)$ is the unknown solution, $g(t)$ is a given function and $K$ is the integral operator for some given kernel function $K$,

$$
\begin{equation*}
(K y)(t)=\int_{0}^{t} K\left(\frac{t}{s}\right) y(s) \frac{1}{s} d s . \tag{1.2}
\end{equation*}
$$

Such equations arise from certain diffusion problems. Because $K$ is not compact, so the standard stability proofs for numerical methods do not fit.

Many people have worked on Hermite-type collocation methods for second-kind Volterra integral equations with smooth kernels ${ }^{[3,4,5,6]}$, but very few deal with weakly singular kernels. Papatheodorou \& Jesanis (1980) considered Volterra integrodifferential equations with weakly singular kernels. Diogo, Mckee \& Tang (1991) investigated a Hermite-type collocation method for (1.1) with a singular kernel of the form $K(\sigma)=\frac{1}{\sqrt{\pi} \sqrt{\ell_{n} \sigma} \sigma^{\mu}}, \mu>1$. They also considered two low-order product integration methods for the solution of (1.1) with a singular kernel of the form $K(\sigma)={\frac{1}{\sqrt{\pi} \sqrt{\ell_{n} \sigma} \sigma^{\mu}}}^{[10]}$. For general kernel $K(\sigma)$, no papers have appeared to discuss it.

[^0]In this paper, first we would to show that a unique smooth solution exists when $\alpha=\int_{1}^{\infty} \frac{|K(\sigma)|}{\sigma} d \sigma<1$. The basic idea is to derive two (linear) Volterra equations for $y(t)$ and $y^{\prime}(t)$ by transforming the original integral equation. Having the coupled equations for both $y(t)$ and $y^{\prime}(t)$, we can then employ piecewise cubic Hermite polynomials to obtain numerical solution of (1.1). Finally, the convergence analysis is given.

## 2. Preliminaries

Let $C^{m}[0 . T]$ denote the Banach space of mth order derivative continuous real-valued functions with the uniform norm

$$
\|u\|_{m, \infty}=\max _{0 \leq j \leq m} \max _{0 \leq t \leq T}\left|u^{(j)}(t)\right|
$$

Our assumption on $K$ is

$$
\begin{equation*}
\alpha=\int_{1}^{\infty} \frac{|K(\sigma)|}{\sigma} d \sigma<1 \tag{2.1}
\end{equation*}
$$

Lemma 1. If $g \in C^{m}[0, T]$ and (2.1) is satisfied, then (1.1) possesses a unique solution $y \in C^{m}[0, T]$.

Proof: Choosing an arbitrary function $v(t) \in C^{m}[0, T]$, and defining $u=S(v)$ such that

$$
\begin{equation*}
u(t)+\int_{0}^{t} K\left(\frac{t}{s}\right) v(s) \frac{1}{s} d s=g(t), \quad t \in[0, T] \tag{2.2}
\end{equation*}
$$

where $S(v)=-\int_{0}^{t} K\left(\frac{t}{s}\right) v(s) \frac{1}{s} d s+g(t)$.
Setting $s=\lambda t$ we have

$$
\begin{equation*}
\int_{0}^{t} K\left(\frac{t}{s}\right) v(s) \frac{1}{s} d s=\int_{0}^{1} K\left(\frac{1}{\lambda}\right) v(\lambda t) \frac{1}{\lambda} d \lambda \tag{2.3}
\end{equation*}
$$

Since $v \in C^{m}[0, T]$ and $g \in C^{m}[0, T]$, we obtain from (2.2) and (2.3) that

$$
\begin{equation*}
u^{(j)}(t)=-\int_{0}^{1} K\left(\frac{1}{\lambda}\right) v^{(j)}(\lambda t) \lambda^{j-1} d \lambda+g^{(j)}(t) \tag{2.4}
\end{equation*}
$$

where $0 \leq j \leq m$. If $u_{1}=S\left(v_{1}\right)$ and $u_{2}=S\left(v_{2}\right)$, we have

$$
\begin{align*}
\left|u_{1}^{(j)}-u_{2}^{(j)}\right| & \leq \int_{0}^{1}\left|K\left(\frac{1}{\lambda}\right)\right| \lambda^{j-1}\left|v_{1}^{(j)}(\lambda t)-v_{2}^{(j)}(\lambda t)\right| d \lambda  \tag{2.5}\\
& \leq \int_{0}^{1}\left|K\left(\frac{1}{\lambda}\right)\right| \lambda^{-1} d \lambda \cdot\left\|v_{1}-v_{2}\right\|_{m, \infty}
\end{align*}
$$

Noting that the coefficient of the last term of (2.5) equals $\alpha$, it follows that

$$
\begin{equation*}
\left\|u_{1}-u_{2}\right\|_{m, \infty} \leq \alpha\left\|v_{1}-v_{2}\right\|_{m, \infty} \tag{2.6}
\end{equation*}
$$

The inequality (2.6) implies that the operator $S$ is a contraction mapping. Since $C^{m}$ is a complete normed space, $S$ has a unique fixed point $y(t) \in C^{m}[0, T]$ such that $y=S(y)$. This completes the proof.


[^0]:    * Received March 26, 1993.
    ${ }^{1)}$ The Project was Supported by National Natural Science Foundation of China.

