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Abstract

In the paper, we first deduce an optimization problem from an inverse problem
for a general operator equation and prove that the optimization problem possesses
a unique, stable solution that converges to the solution of the original inverse
problem, if it exists, as a regularization factor goes to zero. Secondly, we apply the
above results to an inverse problem determining the spatially varying coeflicients
of a second order hyperbolic equation and obtain a necessary condition, which can
be used to get an approximate solution to the inverse problem.

§1. Introduction

Recently, more attention has been paid to various inverse problems for partial dif-
ferential equations, which arise in a variety of applications such as heat conduction,
blood flow in tumors, seismic data inversion, and flow of fluids in porous media. But
most inverse problems are ill-posed in the sense of Hadamard. Many of them have no
solution, or their solutions, if existing, are not unique. Besides, the solutions of many
inverse problems are unstable. Namely, small variations of the data may produce large
variations in the solution.

A general inverse problem we consider in the paper is to determine a parameter
g € , which is a vector-valued function, satisfying the operator equation

Pluwsg] = 1, (1)

on the basis of measurement data
z=Auc X, (2)

where & € C*(Q x V, F), C*(X,Y) denotes the Banach space of k-times continuously
differentiable mappings on X to Y, X and Y are topological spaces, f ¢ F is given,
u© € V 1s a state of the system (1), and @, V, F and K are topological spaces.
The above-mentioned inverse problem usually is ill-posed in the sense of Hadamard.
The regularization method, introduced by Tikhonov [10] for solving Fredholm inte-
gral equation, 1s one of most popular means to solve ill-posed (in a sense of Hadamard)
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problems. Later, Tikhonov applied the method to various ill-posed problems and sum-
marized some of his results in [11]. J. L. Lions applied that method to optimal contro]
problems of distributed parameter systems governed by partial differential equations
[9]. Other papers emphasizing the regularization method include [2,3,6,7,9,13].

In §2 we deduce an optimization problem from the inverse problem via a stabilizing
functional. We prove that the optimization problem has a unique, stable solution, and
that the solution converges to the true solution of the original inverse problem, if it
exists, as a regularization factor goes to zero. Therefore, we can take that solution for an
approximate solution to the original inverse problem, if it exists, or for a quasisolution
to the original inverse problem, if it does not exist owing to some inexactness of the
right term f.

In §3 we make an in-depth study of an inverse problem determining the spatially
varying coefficients of a second order linear hyperbolic equation to show implemen-

tation of the regularization method solving an inverse problem for partial differential
equations. First, we prove that the state of the system, which is the solution of the

hyperbolic equation, is a smooth function of the parameter ¢, which 1s a vector con-
sisting of the cgefficients of the hyperbolic equation. Secondly, we make up a smooth
functional with a cost functional and a stabilizing functional and then give a necessary
condition, which is a variational inequality and can be applied to computation of the

approximate solution of the inverse problem.
§2. The General Inverse Problem

We deduce an optimization problem from the above-mentioned general inverse prob-
lem. Suppose that Vg € Q,4, which is a set in a function space to be defined later, we
can get a solution to (1), v = u(g), which denotes the dependence of u on g. Consider

the cost functional

Jio(g) = [|Au(q) - z|lk, (3)

where K is the observation space. Obviously, Ji,(g) = 0 if (u(g), ¢) is the solution to
the problem (1)-(2).

Next, we say a nonnegative, continuous functional, #(g), is a stabilizing functional,
if for any number r > 0 the set {g € Q;¥(g) < r} is compact.

Now, define the smooth functional

J.sm(‘?) = JI#(Q) + ﬁ“p(Q)& qc Qﬂd‘l (4)

where the regularization factor 3 is a constant, positive number and Y¥(q) is ﬁ.stabilizing

functional. We have
Theorem 1. Let Q, V, and K be Banach spaces and suppose that the follounng

assumptions hold:
Hl. Yq € Q,q there is a solution u = u(q) € V to equation (1) end u € V is
continuous in q € @,



