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Abstract

A linear programming problem can be translated into an equivalent general
linear complementarity problem, which can be solved by an iterative projection
and contraction (BC) method [6]. The PC method requires only two matrix-vector
multiplications at each iteration and the efficiency in practice usually depends on
the sparsity of the constraint-matrix. The prime PC algorithm in 6] is globally
convergent; however, no statement can be made about the rate of convergence.
Although a variant of the PC algorithm with constant step-size for linear program-
ming [7] has a linear speed of convergence, it converges much slower in practice
than the prime method [6]. In this paper, we develop a new step-size rule for the
PC algorithm for linear programming such that the resulting algorithm is globally
linearly convergent. We present some numerical experiments to indicate that 1t
also works better in practice than the prime algorithm.

1. Introduction

This paper presents an algorithm for linear programming problems based on an
iterative projection and contraction method for linear complementarity problems [6].
The algorithm makes a trivial pro jection onto a general orthant at each iteration and the
generated sequence contracts Féjer-monotonically to the solution set, i.e., the Euclidean
distance of the iterates to the solution set decreases at each iteration. Usually the
matrices describing the constraints for large problems will be sparse, but often no
special structure pattern is detectable in it. The projection and contraction method for
linear complementarity problems 1s an iterative procedure which requires in each step
only two matrix-vector multiplications, and performs no transformation on the matrix
clements. The method therefore allows the optimal exploitation of the sparsity of the
constraint matrices and may thus be an efficient method for large sparse problems (16]
and [7]).
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In this paper, we work on the ideas in 6] and [7], and obtain a faster algorithm.
The directions generated by this algorithm are the same as generated by the algorithms
presented in [6] and [7]. However, we get a new simple step-size rule and are able to
obtain global linear convergence without estimation of the norm of the matrix describing
the constraints. Moreover, the new algorithm also works better in practice than the
prime algorithm.

Our paper is organized as follows. In Section 2, we quote some theoretical back-
ground from [6]. Section 3 describes the new algorithm and its relation to other PC |
algorithms. Section 4 proves the convergence properties of our new algorithm. Section
9 gives an extension-the scaled algorithm. In Section 6, we present some numerical
results. Finally, in Section 7, we conclude the paper with some remarks.

We use the same notations as in [6]. The i-th component of a vector z in the real n-
dimensional Euclidean space R" is denoted by z;. A superscript such as in u* refers to
specific vectors and k usually denotes the iteration index. Pq(-) denotes the orthogonal
projection on the convex closed set Q. Specifically, 2 denotes the projection of z on

nonnegative orthant R7 | i.e..
»

(z+); :== max{0, z;}, 8 =1 e 9

I - || and || - [Joc denote the Euclidean and the max-norm, respectively. For a positive
definite matrix G, the norm )| is given by (uTGu)%.

2. Theoretical Background

We consider the pair of the standard form linear program and its dual

min f::T.-I:,

(P) (1)

st Arx=4b, z>0,

max by,

(D} (2)

st ATy <e

‘where A is an m x n-matrix and b, c are vectors of length m and n, respectively. Let
O = {u = (z,y)|z is a solution of (P), v is a solution of (D)}. (3)

Throughout the paper we assume that Q* £ @. It is well known 2] that u = (z,y) € O*
if and only if it solves the following general linear complementarity problem:

{:r: >0, —Aly+c¢>0, et (—ATy + g} =0,

(LCP) |
Azx — b= 0.

(4)

Let o (A —AT) | . (fb) : Q:= {u=(2,9)|z > 0}. (5)



