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Abstract

As a continuation of [1], this paper considers implementation of ODE ap-
proaches. A modified Hamming’s algorithm for integration of (ECP)-equation
is suggested to obtain a local solution. In addition to the main algorithm,
three supporting algorithms are also described: two are for evaluation of the
right-hand side of (ECP)-equation, which may be especially suitable for cer-
tain kinds of (ECP)-equation when applied to large scale problems; the third
one, with a convergence theorem, is for computing an initial feasible point.
Qur numesgical results obtained by executing these algorithms on an example
of (ECP)-equation given in [1] on five test problems indicate their remarkable
superiority of performance to Tanabe’s OQDE version that is recently claimed to
be much better than some well-known SQP techniques.

This work is a continuation of [1], so the same notation is used as before and
the section numbers are continued. Implementatmu problems of ODE methods
are considered in detail here. In Section 4, The main algorithm, a modified
Hamming’s algorithm for integration of (ECP)-equation, 1s described . Two
supporting algorithms for evaluation of the right-hand side of (ECP)-equation
are presented in Section 5, which may be especially suitable for certain kinds
of (ECP)-equation when applied to large scale problems. Then, in Section 6,
an algorithm for computing an initial feasible point and a related convergence
theorem are given. Finally, Section 7 presents our numerical results obtained
by executing these algorithms on an example of (ECP }-equation proposed in
[1] on five test problems. These results show their remarkable superiority of
performance to Tanabe’s ODE version that is recently claimed to be much
better than some well-known SQP techniques(?.

§4. Numerical Integration of (ECP)-Equation

Without loss of generality, from now on we will consider the implementation
problems of ODE approaches only for nummma,tmn pmblem (ECP). Once an (ECP)-
equation has been chc:sen and an initial point Zo € X has been obtained, what we
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need to do next is just to handle it numerically. Let the ECP-equation'be of the

form: 3 . . -~ (4.1a)
= —p(z)P(z)A(2)V flz) = =) .
(0] = 25, | (4.1b)

In the sequel, we will always assume that (ECP)-equation (4.1) has a complete-
limit point z*, which we cofer to as limit point for short. Let us choose the (ECP)-
cate factor (3.13), i.e., ¥(z) = 1/||PAV fl|2 so that the right-hand side is standard-
ized: |

Ip()z = 1. (4.2)

As mentioned at the end of Section 3, this gives the easiest may to get to know the
length of the trajectory from To to any point z(t) along the trajectory.

For {4.1) we can choose between a number of numerical integration schemes with
differing techniques of step-size control. While it is impossible at this stage to spec-
ify a best integration scheme for our problem, it may be proper to use a higher order
integration method here than in the unconstrained case, where approaches of Euler’s
type are often suggested, for now the search should stay closer to the trajectory (see
Brown and Bartholomew [2]). Furthermore, since what we are really interested in is
the limit point, rather than the trajectory itself, the integration method should pos-
sess a good round-off property, and its computation complexity should at the same
time be as low as possible. In the light of these, Hamming’s a,pproa.ch[“], a fourth
order, multistep and predictor-corrector method, seems to be among the reasonable
choices. We will incorporate '+ into a stepsize-variable integration algorithm.

Denote simply the k-th stepsize, z(tx) and p (z(t ) by ok, Tk and p, respectively.
Suppuée that other three points Ty, T2 and x5 are ready to be used besides zo. Then
at the k-th step, k = 3,4, point ZTx41 MaY be calculated by applying Hamming'’s
formulas: |

- 8 1
(1) Prediction k41 = k-3 + §ﬂ'k(Pk + pr—2 — Epk—-l)
112

V41 = Uk41l ™ Tﬁ'dk (da — 0)

wit1 = P{Vk41)
y . 1 | | e
(2) Correction Ck41 = —8-[9:1:;: — Tg-2 +-3ak(wk_+1 + 2pp — Dr—1)] (43)
dip1 = Bk41 — Ch+l
T -;—. C + -—g—d
k+1 = Ck+1 T T9q k41l
'P(-"Jk+1)
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