MATRIX PADÉ APPROXIMATION: RECURSIVE COMPUTATIONS*1)

Xu Guo-liang²⁾
(Computing Center, Academia Sinica, Beijing, China)

A. Bultheel (Department of Computer Science, K.U. Leuven, Belgium)

Abstract

In this paper we consider computational aspect of the matrix Padé approximants whose definitions and properties were considered in an accompanying paper. A three-term recursive approach for the computation is established.

In [1] the authors have studied the general matrix Padé approximation problem. It turned out that it is necessary to consider not only left and right approximants, a duality imposed by the non-commutativity of the matrix multiplication, but also type I and type II approximants, depending on the normalization of the denominator. In this paper, we shall consider a recursive method for computing the approximants. We use the definitions and notations from [1].

We assume that $V, W \in \mathbb{Z}_+^{p \times 1}$ and $U \in \mathbb{Z}_+^{m \times 1}$, so that we do not have to mention this condition every time. On the other hand, we mainly consider the computation of type I right MPAs. The computation of the second type will be shown to be equivalent to the computation of the first type under some conditions. So the right subscript I or II in the notations will be deleted if there is no confusion. Consider the set

$$[V, U, W] = \{(N, M) : NM^{-1} \in [V, U, W]^f\}.$$

The problem we want to solve here is to compute [V, U, W] from two "previous" ones. We shall need some normality condition for f which is different from the one we have defined earlier. We call the new concept I-normality, defined as follows:

Definition 1 (I-normality). If for any V, U and W which satisfy condition

$$\sum_{k=1}^{p} w_{kj} = \sum_{k=1}^{p} v_{kj} + \sum_{k=1}^{m} u_{kj}, \quad j = 1, 2, \dots, m,$$
 (1)

^{*} Received April 10, 1989.

¹⁾ The work was done while the first author worked at the Department of Computer Science, K.U. Leuven.

²⁾ The Project Supported by National Science Foundation of China for Youth.

the matrix H(V, U, W) is nonsingular, then we say that f is I-normal.

For $(N, M) \in [V, U, W]$, we introduce the following notations for the elements of the numerator, denominator and residual:

$$N_{ij}(z) = \sum_{k=0}^{v_i} n_{ij}^{(k)} z^k$$
, $M_{ij}(z) = \sum_{k=0}^{u_i} m_{ij}^{(k)} z^k$, and $(fM - N)_{ij}(z) = \sum_{k=0}^{\infty} e_{ij}^{(k)} z^k$.

We introduce the following matrices:

$$N(V, U, W, V')^{T} = [N_{1}^{(v'_{1}+1)}(V, U, W)^{T} \cdots N_{1}^{(v_{1})}(V, U, W)^{T} \cdots N_{1}^{(v_{1})}(V, U, W)^{T} \cdots N_{p}^{(v'_{p}+1)}(V, U, W)^{T} \cdots N_{p}^{(v_{p})}(V, U, W)^{T}],$$

$$M(V, U, W)^{T} = [M_{1}^{(0)}(V, U, W)^{T} \cdots M_{1}^{(u_{1})}(V, U, W)^{T} \cdots M_{m}^{(0)}(V, U, W)^{T}],$$

$$\cdots M_{m}^{(0)}(V, U, W)^{T} \cdots M_{m}^{(u_{m})}(V, U, W)^{T}],$$

and

$$E(V, U, W, W')^{T} = [E_{1}^{(\omega_{1}+1)}(V, U, W)^{T} \cdots E_{1}^{(\omega'_{1})}(V, U, W)^{T} \cdots E_{p}^{(\omega_{p}+1)}(V, U, W)^{T} \cdots E_{p}^{(\omega_{p}+1)}(V, U, W)^{T} \cdots E_{p}^{(\omega'_{p})}(V, U, W)^{T}],$$

where

$$N_i^{(k)}(V, U, W) = \begin{bmatrix} n_{i1}^{(k)} & n_{i2}^{(k)} & \cdots & n_{im}^{(k)} \end{bmatrix}, \quad M_i^{(k)}(V, U, W) = \begin{bmatrix} m_{i1}^{(k)} & m_{i2}^{(k)} & \cdots & m_{im}^{(k)} \end{bmatrix},$$

$$E_i^{(k)}(V, U, W) = \begin{bmatrix} e_{i1}^{(k)} & e_{i2}^{(k)} & \cdots & e_{im}^{(k)} \end{bmatrix}.$$

The degrees V'+1 and orders W' satisfy $V'+1 \in \mathbb{Z}_+^{p\times 1}$ and $V' \leq V, W' \geq W$. It can be seen that N(V,U,W,-1) is the coefficient matrix of N, M(V,U,W) is the coefficient matrix of M, and $E(V,U,W,\infty)$ is the coefficient matrix of R=fM-N. Hence, from the definition of MPA, we have

$$H(V'+1,U+1,V+1)M(V,U,W) = N(V,U,W,V'), \qquad (2)$$

$$H(V+1,U+1,W+1)M(V,U,W) = 0,$$

$$H(W+1,U+1,W'+1)M(V,U,W) = E(V,U,W,W').$$
(3)

Lemma 1. Let f be I-normal. Then for any V, U, W satisfying (1), we have

(i) The matrix

$$\begin{bmatrix} N(V,U,W,V') \\ E(V,U,W,W') \end{bmatrix}$$
 (5)

is nonsingular, where

$$-1 \le V' \le V$$
, $W' \ge W$ and $|V - V'| + |W' - W| = m$. (6)

(ii) The leading coefficient matrix of the denominator M

$$M^{hc}(V,U,W)^T = \left[M_1^{(u_1)}(V,U,W)^T \cdots M_m^{(u_m)}(V,U,W)^T\right]$$

is nonsingular.

(iii) For V', W' satisfying (6), and W" \geq W' and (V, U + 1, W") satisfying (1), the matrix

$$\left[\frac{N(V,U,W,V')}{2(V,U,W,W')} \right] - \left[\frac{N(V,U+1,W'',V')}{0} \right]$$
 (7)