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Abstract

The equilibrium strategy for N-person differential games can be obtained from
a min-max problem subject to differential constraints. The differential constraints
are treated here by the duality and pena.lty methods.

We first formulate the duality theory. This involves the mtrnductmn of N+1
Lagrange ‘multipliers: one for each player and one commonly shared by all players.
The primal min-max problem thus results in a dual problem, wh:ch is a max-min
problem with no differential constraints. |

We develop the penalty theory by penalizing N + 1 differential constraints. We
give a convergence proof which generalizes a theorem due to B.T. Polyak.

§1 . Introduction

In part I, we have presented a new minimax approach fo N-person nonzero-sum
differential games. We have also seen several advantages of using this approach.

The constraint equation contains N strategy variables u;,---,nn and one state
variable z. Although 2N auxiliary variables vy,---,vy and z',---,2 z™N have been
added in N supplementary differential equation constraints, they play the same roles as
U1, -, uy and z, respectively. The functmna.l F{u,v) depends on uy,--+,UN,V1," ",
and vn: N + 1 state variables z,z',---,z" and N +1 differential constraints are elim-
inated by integration. Therefore, from the mathematical programming pmnt of view,
the approach taken in Part I can be classified as pnma.l Cumputatmnally, this involves
a rather large number of quadrature evalua.tmnsial _ |

It is fair for us to say that most works i in the literature on mlmma.x pmblems are
primal in nature in the sense that their constraints are handled in an implicit way.

On the other hand, looking back at optlmal control problems, we understand that
“the use of dlfferent mathema.tmal programmmg approa.ches of dua.hty and penalty (cf
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[12], [19], [4]) can lead to significant insights for solutions of those pmbiems.' These
approaches also have the added advantage of being very amenable to numerical com-
putations. One may wonder what can be done for N-person differential games. Here

we are interested in developing some duality and penalty theory for minimax problems

as well as numerical methods for N-person diflerential ga,mes Indeed this is the main

motivation of our work.

By duality or penalty, differential constraints are handled explicitly. In the duality
method Lagrange multipliers are introduced which eliminate the state constraints. In
the penalty method, the system dynamics equations are penalized, which again results
in an unconstrained problem. Both methods invole fewer quadrature calculations, and
the variational matrix equations are sparse. Thus the computation is less costly and
more efficient.

In §2, we first establish the duality theory under a general setting. For N -person
games, we need to introduce N + 1 Lagrange multipliers: one for each player, and one
commonly shared by all players. Under the convexity-concavity assumption, we use
the Hahn-Banach separation theorem to prove that the primal inf-sup problem leads

to a dual sup-inf problem.

In §3, we present the fundamental penalty theorem. N +1 auxiliary state equations
are penalized, with N 4 1 penalty parameters. The rate of convergence with respect
to the penalty parameters is determined. Our work here extends and generalizes an

earlier result of B.T. Polyak [16].
The applications of duality and penalty theory to finite element and their numerical

examples are given in Part ITT(),

§2. Duality Theory

As in Part I, we assume the following linear dynamics:

() — A(t)=(t) - EB(t)m(i) f(t)=0 on [0,T],

=1
J:(U) = g9 € R". | (2.1)

For notational convenience later on, we denote the system differential equation as

(DE)—-’-«'(t) A(t)e(t) - EBi(t)‘u:(t) f(t)

fF .ﬁfi,

t=1

The matrix and vector functions A(t) f(t), ,(t], u; (t),‘l = I e W, sa.tlsf_v the sa.me
conditions as in Part L I H
Ea.ch Player wants to minimize his cost | Tee g, T B '”;i'__' i"
| Ji(z,u) = J("’; o TR ﬂN), 1=1,2,. N (22)
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which is continuous with respect to (:c ) in the H! x U norm. As befare, we let o "-aj

F(ﬂ:,ﬂ,x,ﬂ)—F(ﬂ?,ﬂh uﬂ,ﬁl, -13 sV, ‘U’N_)



