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Abstract

In this paper we present a method for solving initial value problems related to
second order matrix differential equations. This method is based on the existence of
a solution of a certain algebraic matrix equation related to the problem, and it avoids
the increas® of the dimension of the problem for its resolution. Approximate solutions,

T

and their error bounds in terms of error bounds for the approximate solutions of the
algebraic problem, are given.

81. Introduction

Second order matrix differential equations of the type
X2 () + A, XN (t) + Ao X(t) = F(t); X(0) = G, X1y = ¢ (1.1)

where A;,C;, fort = 0,1, and F (t) are square complex matrices, elements of Coxp, and F is
continuous, appear in the theory of damped oscillatory systems and vibrational systems/®l.

The standard method for solving equations of the type (1.1) is based on the consideration
of the change ¥; = X; Y, = X{1) and the equivalent first order extended linear system

31 il e B S I P I B
at/ | Yu(t) Y2(¢) F(t) ~e

and the solution of problem (1.1) is given by

Co ¢
X(t) =[], UJ{EXP(tCL} [ c. ] +[} exp((t — s)CL) [ FZ‘) } }ds. (1.3)

The expression (1.3) for the solution of problem (1.1) has the inconvenience of the increase
of the dimension of the problem and the aim of this paper 1s to present a method for solving
(1.1), without increasing the dimension of the original problem, which provides approximate

solutions and their error bounds in terms of data and a solution of the algebraic equation

X2+A1X+Ag = 0. (1.4)
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Explicit methods for solving equations of the type (1.4) may be found in [1, 4], and iterative

othods for its resolution are given in [9-12, 14].
For the sake of clarity in the presentation of the paper we recall some concept and

properties that will be ased below. If A, B are matrices in Gyxp, We denote by || || the
operator norm that 1s defined by the expression

Al = sup [|Az|
|2lf=1

where for a vector y in G, the symbol |jy|| means the Euclidean norm of y. From [3] and

8], it follows that
|ABY < ||l i Bl

“and

| exp(t4) - exp(¢B)]| < exp(tl|Bl)(exp(t]l 4 — Bl) — 1) (1.5)

where t is a real number.

82. Approximate Solutions and Error Bounds

&+

We begin this section with a result that provides a sequence of approximations that
converges to the unique solution of problem (1.1}, without increasing the dimension of the
problem and under the existence hypothesis of a solution of the algebraic equation (1.4).

Theorem 1. Let Xo be a solution of equation (1.4), and let {Zn}n>1 be a sequence of
matrices in Gxp that converges o X, in the operator norm, and let us suppose that F 13 a

continuous function. The sequence of matriz functions X, (t), defined by

X.(t) = exp(tZn)Cnlt) + (‘/; exp((t — 8) Zn) exp{—s(Zn + Al)}ds) D.(t), (2.1)

Cnlt) = Co — j; '/: exp(—uZ,)exp((—u + s)(Zn + A1) F(s)duds,

t

D (t] =[Oy — Z,Co) + -/I; exp(s(Zn + A1) F(s)ds (2.2)

where n > 1, 13 pointwise convergent to the unique solution of problem (1.1), given by

X(t) .= exp(tXo)C(t) + (j: exp((t — 8)Xo) exp{—s(Xo + Al))ds)D(t), (2.3)

C(t) = Co — j; '/: exp(—uXp) exp((—» + 3) (Xg.+ A1) F(s)duds,

¢
D(t) = C1 — XoCo + [ exp{s(Xo + A1))F(s)ds. (2.4)

0
Proof. It is clear that X;{t) = exp(tXo) is a solution of the homogeneous operator

differential equation

X2 4 A, XY 4+ 40X =0. (2.5)



