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A PIECEWISE CONSTANT LEVEL SET FRAMEWORK

JOHAN LIE, MARIUS LYSAKER, AND XUE-CHENG TAI

Abstract. In this work we discuss variants of a PDE based level set method.

Traditionally interfaces are represented by the zero level set of continuous level

set functions. We instead use piecewise constant level set functions, and let

interfaces be represented by discontinuities. Some of the properties of the stan-

dard level set function are preserved in the proposed method. Using the meth-

ods for interface problems, we need to minimize a smooth convex functional

under a constraint. The level set functions are discontinuous at convergence,

but the minimization functional is smooth and locally convex. We show nu-

merical results using the methods for segmentation of digital images.
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1. Introduction

The level set method was proposed by Osher and Sethian in [1] as a versatile
tool for tracing interfaces separating a domain Ω into subdomains. Interfaces are
treated as the zero level set of higher dimensional functions. Moving the interfaces
can implicitly be done by evolving level set functions instead of explicitly moving
the interfaces. We give a brief introduction to the level set method in §2. For a
recent survey on the level set methods see [2, 3, 4, 5]. Applications of the level set
method include image analysis, reservoir simulation, inverse problems, computer
vision and optimal shape design [6, 7, 8, 9]. In this work, we present variants of the
level set method. The primary concern for our approach is to remove the connection
between the level set functions and the signed distance function and thus remove
some of the computational difficulties associated with the calculation of the Eikonal
equation, see §2. Another motivation is to avoid the non-differentiability associated
with the Heaviside and Delta functions used in some of the level set formulations
[6, 10]. This will also turn the minimization functional into a locally convex and
smooth functional. The third concern of this approach is to develop fast algorithms
for level set methods. Due to the fact that the functional and the constraints for
this approach are rather smooth, it is possible to apply Newton types of iterations
to construct fast algorithms for the proposed model. One of the variants extends
the level set models proposed in [11, 12] and it is also closely related to the phase-
field methods [13, 14, 15, 16]. Our framework can be used for different applications
where a domain should be divided into subdomains. In this work, we concentrate
on image segmentation problems.

For a given digital image u0 : Ω → R, the aim is to separate Ω into a set of
subdomains Ωi such that Ω = ∪n

i=1Ωi and u0 is nearly a constant in each Ωi.
Having determined the partition of Ω into a set of subdomains Ωi, one can do
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further modelling on each domain independently and automatically. One general
image segmentation model was proposed by Mumford and Shah in [17]. Numerical
approximations are thoroughly treated in [18]. Using this model, the image u0 is
decomposed into Ω = ∪iΩi∪Γ, where Γ is a curve separating the different domains.
Inside each Ωi, u0 is approximated by a smooth function. The optimal partition of
Ω is found by minimizing the Mumford-Shah functional (6). This is explained in §2.
Following the Mumford-Shah formulation for image segmentation, Chan and Vese
[6, 10] solved the minimization problem by using level set functions. The interface Γ
is traced by the level set functions. Motivated by the Chan-Vese approach, we will
in this article solve the segmentation problem in a different way, i.e. by introducing
a piecewise constant level set function φ. Instead of using the zero level of a function
to represent the interface between subdomains, we let the interface be represented
implicitly by the discontinuities of a set of basis functions ψi(φ). In order to divide
Ω into subdomains Ωi, such that Ω = ∪iΩi, we use a set of functions ψi satisfying
ψi = 1 in Ωi and ψj = 0 in Ωi when j 6= i, see Figure 1.

The rest of this article is structured as follows. In §2 we give a brief review
of the traditional level set method. Our general framework and the minimization
functional used for image segmentation is formulated in §3. The segmentation
problem is formulated as a minimization problem with a smooth cost functional
under a constraint. We are essentially minimizing the Mumford-Shah functional
associated with the new level set model. In §4 and §5 we explain our two variants of
the level set method for image segmentation in more detail. Both sections include
algorithms and numerical results. We conclude with a brief discussion. For a more
detailed treatment of the two methods, including more numerical results we refer
the reader to [19, 20].

2. Standard Level Set Methods

The main idea behind the level set formulation is to represent an interface Γ(t)
bounding a possibly multiply connected region in Rn by a Lipschitz continuous
function φ, having the following properties

(1)





φ(x, t) > 0, if x is inside Γ,
φ(x, t) = 0, if x is at Γ,
φ(x, t) < 0, if x is outside Γ.

Some regularity must be imposed on φ to prevent the level set function of being
too steep or too flat near the interface. This is normally done by requiring φ to be
a signed distance function to the interface

(2)





φ(x, t) = d(Γ, x), if x is inside Γ,
φ(x, t) = 0, if x is at Γ,
φ(x, t) = −d(Γ, x), if x is outside Γ,

where d(Γ, x) denotes Euclidean distance between x and Γ. Having defined the level
set function φ as in (2), there is a one to one correspondence between the curve Γ
and the function φ. The distance function φ obeys the Eikonal equation

(3) |∇φ| = 1.

The solution of (3) is not unique in the distributional sense. Finding the unique
vanishing viscosity solution of (3) is usually done by solving the following initial
value problem to steady state

φt + sgn(φ̃)(|∇φ| − 1) = 0(4)

φ(x, 0) = φ̃(x).(5)


