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Abstract

A general and unified method is presented for generating a wide range of 3-D objects
by smoothing the vertices and edges of a given polyhedron with arbitrary topology
using bicubic Bezier patches. The commaon solution to the compatibility equations of
G' geometric continuity between two Bezier patches is obtained and employed as the
foundation of this new method such that this new solid and surface model is reliable and
compatible with the solid modeling and surface modeling systems in the most common
use. The new mgethod has been embeded in an algorithm supported by our newly
developed solid modeling system MESSAGE. The periormance and implementation of
this new algorithm show that it is efficient, flexible and easy to manipulate.

§1. Introduction

In recent years, much effort has been put to developmg more reliable and flexible solid
modeling systems and surface modeling systems to meet the needs in industry. Combining
the surface modeling and solid modeling is a new trend in computer graphics, CAD/ CAM
and their applications. The application of surface modeling techniques within a solid mod-
eling system requires a general and unified method to generate a wide range of 3-D objects
bounded by planar and Bezier patches. Especially, in shape design, it is very common and
important to creat a wide range of objects from polyhedra to free form shape in one system.

Quite a number of solid and surface modeling systems have adopted more flexible math-
ematical models such as B-reps, CSG, Bezier patches, B-spline surfaces, Coons patches and
so on. Recently, the topic of integration of surface modeling with solid modeling has re-
ceived much attention [1]-{2]. For the description of many objects, both the flexibility of
the shape controlling of free-form surfaces and compatible representation of solid modeling
techniques must be provided. Unfortunately, how to generate a wide range of 3-D objects
from a polyhedron such that the model is consistent with the most solid modeling system
is still a problem.

Some useful methods for smoothing vertices and edges of polyhedra have been proposed
by Doo et 3_11[3]*[411 Lu et al.l%l, H.Chiyokura and F.Kimura et al.lé1=17l and J.R. Rossignac
and A.A.G. Requicha et al.l8]=(%] In [3], [4], extraordinary points are represented by a lot
of subdivided patches, and globally rounded surfaces are generated from polyhedra. But it
is difficult to round off a solid locally or generate sharp edge curves, and it 1s difficult to do
~ any analysis because it is not described in mathematical expression and analytic form. In |6]
a method is proposed for rounding off corners and edges of polyhedra using Gregory patches
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and applied to MODIF system successfully. The Gregory patches are neither represented
by Bezier nor B-spline surfaces and are inconsistent with most solid and surface modeling
systems. In {8, [9] some blending methods were proposed, but they cannot be used for
rounding off corners. The main difficulties in solving this problem come from the smooth
joint between free-form surfaces. Unfortunately, the conditions of geometric continuity and
its solutions are still a considerable problem.

In this paper the common solutions to the compatible equations of geometric continuity
of first order (denoted by G!) between two Bezier patches are obtained from which we drive
the condition of G* geometric continuity (Fig. 1)
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It is readily shown that if S and S meet with G! along I', then there exist the following
rational polynomials
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Substituting (7) and {8) into (9) and comparing the coefficients on both sides yield
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From {10) we obtain {Q;0, @11, @12, @13). Substituting it into (11) we have some conditions
on the coeflicients d;,e; and f; which are called shape parameters. Notice that the shape
- parameters must be independent of the control points. Thus we have

M2 = Mj(M;)'M,, (12)
M7 = M3 (M) ' M;. (13)



