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Abstract

Preconditionings have proved to be a powerful tpechnique for accelerating the
rate of convergence of an iterative method. This paper, which is concerned with
the conjugate gradient algorithm for large matrix computations, investigates an
approximate polynomial preconditioning strategy. The method is particularly

attractive for implementation on vector computers.

1. Introduction

In recent years, remarkable progress has been reported on large scale numer-
ical simulations for many practical problems in science and engineering. The rapid
advances in the field of computer hardware, in particular, the advent of supercom-
puter technology, have played a significant role in this development. It is important,
however, to note that in order to exploit the full potential of the vector or parallel
processors available on supercomputers, numerical algorithms must be developed
to take advantage of the specific computer architecture. Many standard numerical
algorithms, which have been very successful on the conventional scalar computers,
could become inefficient when implemented on the supercomputer.

The purpose of this paper is to study efficient numerical algorithms for large
matrix computations on vector processors. It is important to develop very efficient
numerical algorithms, because such a problem frequently results from a numerical
solution to partial differential equations.

* Based on the lecture presented at the China-U.S.A. seminar held at the Xidn Jiaotong Univer-
sity, December 1987. This work was supported by the Natural Sciences and Engineering Research
Council of Canada Grant U0375.
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2. Conjugate Gradient Algorithm

Consider the linear system
| Au = b, (1}

where A is a given symmetric and positive definite matrix. Now, introducing a
non-singular matrix M, Equation (1) can be rewritten as

AM *Mu=15. (2)

Equation (2) is known as the preconditioned system, and M is the preconditioning

matrix.

It has been widely accepted that the method of conjugate gradient (CG) [3]
is an efficient iterative technique for large matrix calculations. The CG algorithm
for solving Equation (2) can be summarized as follows:

Initialization. Start with an approximation to the solution vector u
pute the residual r® = b — Au®, and set the direction vector p° = M —1,0

Iteration. Forn=20,1,2,---, do:

Step 1. a, = (rnaM_lrﬂ)/(P":APn)'

Step 2. u™t! = 4™ + a,p".

Stpe 3. "t = ¢™ — o, Ap".

Stpe 4. Bp = (r"*t, M~ 1ent ) /(P*, M 7117,

Stpe 5. p"tl = M~ 1e7H L 8 0",

The process is continued until ||r?*!|| satisfied a convergence criterion. The
inner product (z,y) is defined as =7y for any vectors z and y.

The CG algorithm presented here can be efficiently implemented on a vector
computer. For the CDC CY BER 205 computer with 2 pipes and 64-bit arithmetic,
the maximum computational rate for a linked triad operation (i.e., vector 4+ constant
* vector) is 200 million floating-point operations per second (Mflops). It can be easily
seen that Step 2, 3 and 5 are the linked triad operations. The two inner products 1n
Steps 1 and 4 can be computed by the Q8SDOT routine available on the CYBER
205 computer, and the maximum rate is 100 Mflops. The major computational work
for each CG iteration consists of the matrix by vector multiplication Ap and the
preconditioning step M ~'r. For large and sparse matrices, the non-zero coefficient
elements of A can be stored by diagonals. The computation for Ap can then be
efficiently implemented almost entirely using the linked triad operations {6].

The computational work for each CG iteration can be expressed as

0 com-

W=W,+ WP: (3)
where W), is the work for the basic CG algorithm and

W,=2+IP+3%xLT+1xMV. (4)



