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Abstract

The weighted moore-Penrose inverse of a partitioned matrix A = (U V') is discussed.
Representations for the weighted Moore-Penrose inverse of the matrix A are derived,
which extend some earler results.

§1. Introduction

Various expressions for the generalized inverse have been developed by a number
of authors. Greville [4] has developed a representation for the generalized inverse of a
partitioned matrix A = (Ax_1,a;) and presented a famous recursive method for computing
the M—P inverse of A.

Wang and Chen!® extended Greville’s result to compute the weighted M—P inverse
of Ay = (Ak—1,ax). The result is as follows: Let Ay be the submatrix of A consisting of
the first k columns and A; be partitioned as Ay = {Ax_1, ax). The matrix N, € C**F

N1 & )
I: ek '
Let Xk—l = [Ak“l)I{N;-li Xh = (Ak)IIN;I dk == Xk_ldk, and Cyk = Qp — Ak_.ldk =
(I r— Ak..lxk_1]uk. Then

. ( X1 — dkb; - (I— Xk_lAk_.])N;__lllkb: )
bi ’

is the leading principal submatrix of N, and N; is partitioned as Ny = (

(1.1)

where

* —]1 = .
b __{ (Ckok) ckM, lfck?éﬂ, (1.2)

| 6o dENk—1 — ) X1, Hfcx =0,

and

6k = nex + dp Ne—ady — (dihy + Ldy) — (1 — X1 Ax_1) Ny b (L.3)

is a positive real scalar.

Cline!®l discussed the M-P inverse of any matrix A partitioned as A = (U V), in
which U and V are submatrices, and presented an expression for the M—P inverse of A
under some conditions (zee [3], Theorem 1).

It is the purpose of this paper to develop representations for the weighted M—P inverse

of a partitioned matrix 4 == (U V). A more general result is given without any conditions.
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Lemma 1. Let the columns of the matrices R and S consist of a basts for N(A*)
and N(A) respectively, then

I—AAL y =M"'R(R°M™'R)'R*, I- AL A= S(S*NS)~'S*N.
§2. Main Resulis

We begin by combining expressions in (1.2) into a single expression. Since ¢ is a single
column vector, cx # 0 implies b} = (cpMex) 1ex M = (cx)iy 5, and thus (cx)is 5 06 = L
Further, cx = 0 implies (cx}{; ;, = 0. Then we can rewrite by as

bx = (ea)ie,s, +[1 — (er)ir.6, )0k T (dE N1 — 13) X1 (2.1)

Now consider an arbitrary matrix A = (U V), where U € C™*™ and V €
Ccm*(n-ni) the hermitian positive definite matrix N is partitioned as

v=(HE) . (2.2)

where N; € C"1*™ Corresponding to dx, cx and &, let

a-l

D = U;}NIV’ ' (2'3)
G = [I - UUIJHI)VI (2'4)
K=N;+D'N\D—(D*L+L*D) - L*(I - U} 5 U)N; ' L. (2.5)

We shall prove that K is hermitian positive definite.

‘ wW; -D
Let the columns of W, be consist of a basis for N(U), and W3 = ( 0 ; I ) , then
iy

W, has full column rank, thus the matrix Wy NW,; is hermitian positive definite. Then the
second diagonal block of (W3 NW;)~! is also hermitian positive definite, we can show that
it is equal to K ~? by using Lemma 1. Hence K is hermitian positive definite. Then we have

our main theorem.

Theorem 1. Let A C™*" A = (U V), where U € C™ ", n; < n, N be parts-
tioned as (2.2), D,C and K be defined as before, then

Ui, — DH — (I - Uy UYNTALH ) | 2:8)

where

H=Chp+(I-ChxC)K Y (D*Ny - LU n,. (2.7)

Proof. Let the right hand side of (2.6) be X, then we can prove Theorem 1 by verifing
AXA=A, XAX =X, (MAX)'=MAX, (NXA) = NXA.

Omitted.



