REPRESENTATIONS FOR THE WEIGHTED MOORE-PENROSE INVERSE OF A PARTITIONED MATRIX*

Miao Jian-ming (Department of Mathematics, Shanghai Normal University, Shanghai, China)

Abstract

The weighted moore-Penrose inverse of a partitioned matrix A = (U V) is discussed. Representations for the weighted Moore-Penrose inverse of the matrix A are derived, which extend some earler results.

§1. Introduction

Various expressions for the generalized inverse have been developed by a number of authors. Greville [4] has developed a representation for the generalized inverse of a partitioned matrix $A_k = (A_{k-1}, a_k)$ and presented a famous recursive method for computing the M-P inverse of A.

Wang and Chen^[5] extended Greville's result to compute the weighted M-P inverse of $A_k = (A_{k-1}, a_k)$. The result is as follows: Let A_k be the submatrix of A consisting of the first k columns and A_k be partitioned as $A_k = (A_{k-1}, a_k)$. The matrix $N_k \in C^{k \times k}$ is the leading principal submatrix of N, and N_k is partitioned as $N_k = \begin{pmatrix} N_{k-1} & l_k \\ l_k^* & n_{kk} \end{pmatrix}$. Let $X_{k-1} = (A_{k-1})_{MN_k-1}^+$, $X_k = (A_k)_{MN_k}^+$, $d_k = X_{k-1}a_k$, and $c_k = a_k - A_{k-1}d_k = (I - A_{k-1}X_{k-1})a_k$. Then

$$X_{k} = \begin{pmatrix} X_{k-1} - d_{k}b_{k}^{*} - (I - X_{k-1}A_{k-1})N_{k-1}^{-1}l_{k}b_{k}^{*} \\ b_{k}^{*} \end{pmatrix}, \qquad (1.1)$$

where

$$b_{k}^{*} = \begin{cases} (c_{k}^{*} M c_{k})^{-1} c_{k}^{*} M, & \text{if } c_{k} \neq 0, \\ \delta_{k}^{-1} (d_{k}^{*} N_{k-1} - l_{k}^{*}) X_{k-1}, & \text{if } c_{k} = 0, \end{cases}$$
(1.2)

and

$$\delta_k = n_{kk} + d_k^* N_{k-1} d_k - (d_k^* l_k + l_k^* d_k) - l_k^* (I - X_{k-1} A_{k-1}) N_{k-1}^{-1} l_k$$
 (1.3)

is a positive real scalar.

Cline^[3] discussed the M-P inverse of any matrix A partitioned as $A = (U \ V)$, in which U and V are submatrices, and presented an expression for the M-P inverse of A under some conditions (see [3], Theorem 1).

It is the purpose of this paper to develop representations for the weighted M-P inverse of a partitioned matrix $A = (U \ V)$. A more general result is given without any conditions.

^{*}Received May 6, 1986.

Lemma 1. Let the columns of the matrices R and S consist of a basis for $N(A^*)$ and N(A) respectively, then

$$I - AA_{MN}^+ = M^{-1}R(R^*M^{-1}R)^{-1}R^*, \quad I - A_{MN}^+A = S(S^*NS)^{-1}S^*N.$$

§2. Main Results

We begin by combining expressions in (1.2) into a single expression. Since c_k is a single column vector, $c_k \neq 0$ implies $b_k^* = (c_k^* M c_k)^{-1} c_k^* M = (c_k)_{M,\delta_k}^+$, and thus $(c_k)_{M,\delta_k}^+ c_k = 1$. Further, $c_k = 0$ implies $(c_k)_{M,\delta_k}^+ = 0$. Then we can rewrite b_k^* as

$$b_k^* = (c_k)_{M,\delta_k}^+ + [1 - (c_k)_{M,\delta_k}^+ c_k] \delta_k^{-1} (d_k^* N_{k-1} - 1_k^*) X_{k-1}. \tag{2.1}$$

Now consider an arbitrary matrix $A = (U \ V)$, where $U \in C^{m \times n_1}$ and $V \in C^{m \times (n-n_1)}$, the hermitian positive definite matrix N is partitioned as

$$N = \begin{pmatrix} N_1 & L \\ L^* & N_2 \end{pmatrix}, \tag{2.2}$$

where $N_1 \in C^{n_1 \times n_1}$. Corresponding to d_k, c_k and δ_k , let

$$D = U_{MN}^+, V, \tag{2.3}$$

$$C = (I - UU_{MN_1}^+)V, (2.4)$$

$$K = N_2 + D^* N_1 D - (D^* L + L^* D) - L^* (I - U_{MN_1}^+ U) N_1^{-1} L.$$
 (2.5)

We shall prove that K is hermitian positive definite.

Let the columns of W_1 be consist of a basis for N(U), and $W_2 = \begin{pmatrix} W_1 & -D \\ 0 & I_{n_2} \end{pmatrix}$, then W_2 has full column rank, thus the matrix $W_2^*NW_2$ is hermitian positive definite. Then the second diagonal block of $(W_2^*NW_2)^{-1}$ is also hermitian positive definite, we can show that it is equal to K^{-1} by using Lemma 1. Hence K is hermitian positive definite. Then we have our main theorem.

Theorem 1. Let $A \in C^{m \times n}$, $A = (U \ V)$, where $U \in C^{m \times n_1}$, $n_1 < n, N$ be partitioned as (2.2), D, C and K be defined as before, then

$$A_{MN}^{+} = \begin{pmatrix} U_{MN_{1}}^{+} - DH - (I - U_{MN_{1}}^{+} U)N_{1}^{-1}LH \\ H \end{pmatrix}, \qquad (2.6)$$

where

$$H = C_{MK}^{+} + (I - C_{MK}^{+}C)K^{-1}(D^{*}N_{1} - L^{*})U_{MN}^{+}. \tag{2.7}$$

Proof. Let the right hand side of (2.6) be X, then we can prove Theorem 1 by verifing

$$AXA = A$$
, $XAX = X$, $(MAX)^* = MAX$, $(NXA)^* = NXA$.

Omitted.