THE ALGEBRAIC PERTURBATION METHOD FOR GENERALIZED INVERSES'

Ji Jun

(Mathematics Department, Shanghai Teachers University, Shanghai, China)

1. Introduction

Algebraic perturbation methods were first proposed for the solution of nonsingular linear systems by R. E. Lynch and T. J. Aird [2]. Since then, the algebraic perturbation methods for generalized inverses have been discussed by many scholars [3]-[6]. In [4], a singular square matrix was perturbed algebraically to obtain a nonsingular matrix, resulting in the algebraic perturbation method for the Moore-Penrose generalized inverse. In [5], some results on the relations between nonsingular perturbations and generalized inverses of $m \times n$ matrices were obtained, which generalized the results in [4]. For the Drazin generalized inverse, the author has derived an algebraic perturbation method in [6].

In this paper, we will discuss the algebraic perturbation method for generalized inverses with prescribed range and null space, which generalizes the results in [5] and [6].

We remark that the algebraic perturbation methods for generalized inverses are quite useful. The applications can be found in [5] and [8].

In this paper, we use the same terms and notations as in [1].

2. Main Results

First, we will give two lemmas.

Lemma 1. Let $A \in C_r^{n \times n}$, and let L and K be subspaces of C^n of dimension $s \le r$ and n-s respectively. $AL \oplus K = C^n$, B and $C^* \in C_{n-s}^{n \times (n-s)}$ are matrices whose columns form bases for K and L^{\perp} respectively. Then

$$\left[\begin{array}{cc} T & B \\ C & 0 \end{array}\right]$$

is nonsingular, and

$$\begin{bmatrix} T & B \\ C & 0 \end{bmatrix}^{-1} = \begin{bmatrix} A_{L,K}^{(2)} & P_{(A^{\bullet}K^{\perp})^{\perp},L}C^{+} \\ B^{+}P_{K,AL} & -I_{n-\bullet} \end{bmatrix}$$

^{*} Received November 11, 1986.

where $T = A + BC - AP_{(A^*K^{\perp})^{\perp},L}$.

Proof. It is easy to show that

$$AL \oplus K = C^n \iff (A^*K^{\perp})^{\perp} \oplus L = C^n$$
 (see [7])

so that $P_{K,AL}$, $P_{(A^*K^{\perp})^{\perp},L}$ and $A_{L,K}^{(2)}$ exist.

From L = N(C), it follows that

$$CA_{L,K}^{(2)} = 0, \quad CP_{L,(A^*K^{\perp})^{\perp}} = 0$$
 (1)

and

$$TP_{(A^{\bullet}K^{\perp})^{\perp},L}C^{+} - B = (A + BC - AP_{(A^{\bullet}K^{\perp})^{\perp},L})P_{(A^{\bullet}K^{\perp})^{\perp},L}C^{+} - B$$

$$= BCP_{(A^{\bullet}K^{\perp})^{\perp},L}C^{+} - B$$

$$= BCC^{+} - B = 0$$
(2)

and

$$CP_{(A^{\bullet}K^{\perp})^{\perp},L}C^{+} = CC^{+} = I_{n-\bullet}.$$
 (3)

Finally, obviously $BB^+ = P_{R(B)} = P_K$, and $BB^+ P_{K,AL} = P_{K,AL}$ so that

$$TA_{L,K}^{(2)} + BB^{+}P_{K,AL} = (A + BC - AP_{(A^{*}K^{\perp})^{\perp},L})A_{L,K}^{(2)} + P_{K,AL}$$

$$= AA_{L,K}^{(2)} + P_{K,AL}$$

$$= P_{AL,K} + P_{K,AL} = I_{n}.$$
(4)

Since $R(AA_{L,K}^{(2)}) = AL$ and $N(AA_{L,K}^{(2)}) = K$. From (1)-(4), we have

$$\begin{bmatrix} T & B \\ C & 0 \end{bmatrix} \cdot \begin{bmatrix} A_{L,K}^{(2)} & P_{(A^*K^{\perp})^{\perp},L}C^{+} \\ B^{+}P_{K,AL} & -I_{n-*} \end{bmatrix} = \begin{bmatrix} I_{n} & 0 \\ 0 & I_{n-*} \end{bmatrix}$$

which is the required result.

Lemma 2. Let $egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}$ be a partitioned matrix which is nonsingular, and let the submatrix A_{22} also be nonsingular. Then

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11,2}^{-1} & -A_{11,2}^{-1} A_{12} A_{22}^{-1} \\ -A_{22}^{-1} A_{21} A_{11,2}^{-1} & A_{22}^{-1} + A_{22}^{-1} A_{21} A_{11,2}^{-1} A_{12} A_{22}^{-1} \end{bmatrix}$$

where $A_{11,2} = A_{11} - A_{12}A_{22}^{-1}A_{21}$.

Theorem 1. Let $A \in C_r^{m \times n}$. L is a subspace of C^n of dimension $s \leq r$, and K is a subspace of C^m of dimension m-s. Suppose $AL \oplus K = C^m$, and $B \in C_{m-s}^{m \times (m-s)}, C^* \in C_{n-s}^{m \times (n-s)}$ are matrices whose columns form bases for K and L^{\perp} respectively. If m=n, let $T=A+BC-AP_{(A^*K^{\perp})^{\perp},L}$. If m>n, let $B=[B_1:B_2]$ where $B_1 \in C_{n-s}^{m \times (n-s)}$, and