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1. Introduction

Algebraic perturbation methods were first proposed for the solution of nonsingular
linear systems by R. E. Lynch and T. J. Aird [2]. Since then, the algebraic perturbation
methods for generalised inverses have been discussed by many scholars [3]-[6]. In [4], a
aingular square matrix was perturbed algebraically to obtain a nonsingular matrix, resulting
in the algebraic perturbation method for the Moore-Penrose generalised inverse. In [5], some
results on tlhe relations between nonsingular perturbations and generalized inverses of mx n

matrices were obtained, which generalised the results in [4]. For the Drasin generalized
inverse, the author has derived an algebraic perturbation method in {6].

In this paper, we will discuss the algebraic perturbation method for generalised in-
verses with prescribed range and null space, which generalizes the results in [5] and [8].
We remark that the algebraic perturbation methods for generalised inverses are quite

useful. The applications can be found in [5] and [8]. 3
In this paper, we use the same terms and notations as in [1].

2. Main Results

First, we will give two lemmas.

Lemma 1. Let A€ C**", and let L and K be subspaces of C" of dimension s < r
and n — s respectsvely,. ALK = C™, B and C* € C:f}"_'} are matrices whose columns

form bases for K and L1 respectively. Then

T B
c 0

13 nonsingular, and

T & (2) +
B AL,K P[AlK'J.)J.!LC
C 0
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where T'= A+ BC — AP qepcay1 f, -
Proof. 1t i1s easy to show that

ALG K =C" <> (A*K1) Lo L=C"  (see|[7))

80 that Px ar, Pla+x1)s s, and AEL’ exist,
From L = N(C), it follows that

CAJ([?;]};{ = 0, CPL,[A'K"‘]"‘ — 0 (1)
and
TPEA-rKJ.).L!LC-'- s B = [A + BC g AP{A'K~’-]-L,L)P(A'K-'~)-L,L0+ - B
= BGP(A-KJ.}.L'LO-l- - B (2)
= BCCtY-B=0
and
OB yepeifis L OF = GO = Iy s (3)

Finally, obviously BBt = PR[B] = Py, and BB+PK'AL = Py a1 8o that
TAM}H + BB+PK AL = (4‘1 + BC -~ AP{A#H.L}J. L]A + PH’ AL
— AAE}‘- + Px arL (4)

= Par,x + Px aL = I,.
Since R(AAE':}{] = AL and N(AAE":L{) = K. From (1)-{4), we have

T B . AE‘.'?)K ﬂA*K.:.}J.‘LC*' _ [ In 0
¢ 0 Bt Py 4L = P, 0 Ih-s

which is the required result.
Ay Agg

Az; Az
the submatriz Az also be nonsingular. Then

Lemma 2. Let ] be a partitioned mairiz which 13 nonsingular, and let

el
Al Ap - A, | —Aft, Ay Agy
A1 Az ~Azy A AT, AR + Al An AT A AL

where Au,z = Ay — Alzﬁgglﬂgl.
Theorem 1. Let A€ C**™, L 13 g subspace of C™ of dimension s <r, and K is a
subspace of C™ of dimension m — s. Suppaa: AL K =(C", and B € C:ffm ’) ,O* €

e f"-'] are matrices whose columns form bases for K and LY respectively. If m = n,

let T = A+ BC — AP 4o 1)1 . If m > n, let B = |B,iB;| where By € C7(*"%), and



