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Abstract

This is the second half of the article. The rate of converganca for the A—p version with goometrie
meshes is discussed.

§ 3. C%-compatible Local Mappings and Geometric Meshes

In this section we discuss two C%-compatible local mappings and the geometric
meshes which utilize these mappings.

3.1. The Bilinear Mapping

The simplest mapping which maps the standard element D=[—1, 1] %
[—1, 1] to an arbitrary quadrilateral element ¥ is the bilinear mapping

{ z=a;§ + bim+ciém+da,
Y = aaf + ban+Cabm+da.

Suppose the vertices of the quadrilaterals £ and D are numbered counter-
clockwise ag shown in Fig. 3.1.1:
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Fig. 38.1.1

Then we have

ﬂi=%-(*'m1 g 1?3 ﬂ?4), ﬂn=—1-(—y1+y2+3/3"2}4),

bi=%(—'$1“=ﬂn* ws+Ta), bﬂ=%—(“‘§1“yﬂ+y3+%):

* Received Beptomber 16, 1936.
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01=*i—($1“—ﬁ5+¢3‘“m4), cﬁi—(m—yri-ys—yg),

d1_—"—4:j:-(ﬂ?1+ﬂ?3+m3+ﬂ?4)} dg=%‘(g1+yﬂ+y3+y4). (3.1-2)

The Jacobian of this mapping is
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in which S is the area of the iriangle P PPy, and 853, is the area of the
quadrilateral K=P,P,P,P,, -

It is easy to show that the Jacobian evaluated at each vertex P, of D equals half
the area of the triangle which is determined by the corresponding vertex P, of E
with its two adjacent vertices, Thus we have (see (2.3.7) in [1])

O?=max gg?: ig =-%—Iﬂﬂ£{lgm, Ssa.;, !S‘a.ﬂ, Sm}, | (3.1.4)
3”=min g%;: 3{3 7= % 'ﬂ(fg;ua, lgﬂm, Smi, Siﬂé.}- (315)

The only bilinear mapping with a constant Jacobian is' the one which maps D
to a parallelogram. In this case the mapping is

{ﬂF = a1 + bin-+-dy,

3.1.6
Y = @s§ + ban+d, : ‘

with

The simplest case that the mapping maps D to a rectangle was discussed in Theorem
2.3.2 (see [1]), |

It ig easy to show that the bilinear mapping on arbitrary quadrilateral meshes
given by (3.1.1) is C°—compatible. |

~ 8.2. The Polar Mapping |

Using polar coordinates we can transform the polar net in (#, ¥)~plane to the
rectangular net in (r, #3—plane, then a linear mapping transforms the elements to
the standard square. It is clear that this mapping is C°-compatible.

The local mapping is the composition of the following:



