A FOURTH ORDER FINITE DIFFERENCE APPROXIMATION TO THE EIGENVALUES OF A CLAMPED PLATE*

Lü TAO (吕 涛)

(Chengdu Branch, Academia Sinica, Chengdu, China)

LIEM CHIN BO (林振宝) SHIH TSI MIN (石济民)

(Hong Kong Polytechnic)

Abstract

In a 21-point finite difference scheme, assign suitable interpolation values to the fictitious node points. The numerical eigenvalues are then of $O(h^2)$ precision. But the corrected value $\hat{\lambda}_h = \lambda_h + \frac{h^2}{6} \lambda_h^{3/2}$ and extrapolation $\hat{\lambda}_h = \frac{4}{3} \lambda_h - \frac{1}{3} \lambda_h$ can be proved to have $O(h^4)$ precision.

§ 1. Introduction

Consider the following eigenvalue problem of a clamped plate

$$\begin{cases} \Delta^2 u - \lambda u = 0, & (x, y) \in \Omega, \\ u = \frac{\partial u}{\partial n} = 0, & (x, y) \in \partial \Omega, \end{cases}$$
 (1.1)

where Ω is a bounded open area in the X-Y plane, $\partial\Omega$ is the boundary of Ω , and $\frac{\partial}{\partial n}$ denotes the outward normal derivatives.

Let

$$S_h = \{(mh, nh) \mid m, n \text{ integer}\},\$$

 $\Omega_h = \Omega \cap S_h, \quad \partial \Omega_h = \partial \Omega \cap S_h.$

Let $\Delta_{\mathbf{k}}$ and $\Delta_{\mathbf{k}}^{\times}$ be the well-known 5-point and skewed 5-point difference operators respectively.

In dealing with (1.1) by numerical methods, usually Δ^2 will be approximated by Δ_h^2 , the so called 13-point scheme. Thomée⁽¹⁾ proved λ_h is of $O(h^{1/2})$ precision, where λ_h satisfies:

$$\begin{cases}
\Delta_h^2 u_h - \lambda_h u_h = 0, & (x, y) \in \Omega_h, \\
u_h = 0, & (x, y) \in S_h \setminus \Omega_h.
\end{cases} \tag{1.2}$$

Using the operator Δ_h^2 to approximate Δ^2 in irregular interior points⁽²⁾, Kuttler⁽³⁾ obtained $O(h^2)$ and $O(h^2|\ln h|^{1/2})$ approximations to the eigenvalues and eigenvectors of (1.1) respectively.

In this paper, the biharmonic operator is approximated using the 21-point stencil

Received December 10, 1986.

$$M_{h}u = \frac{1}{3h^{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & -10 & -2 & 1 \\ 1 & -10 & 36 & -10 & 1 \\ 1 & -2 & -10 & -2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} u.$$

It is easy to see that

$$M_{\lambda} = \frac{1}{3} \Delta_{\lambda}^2 + \frac{2}{3} \Delta_{\lambda} \Delta_{\lambda}^{\times}.$$

If $u \in C^6(\mathbb{R}^2)$, by direct evaluation,

$$(M_h - \Delta^2)u = \frac{h^2}{6} \Delta^3 u + O(h^4). \tag{1.3}$$

Lu et al.^[4] applied the 21-point scheme to the biharmonic boundary value problem and showed that the error is $O(h^4)$. Here, we generalize his result to the eigenvalue problem. First, we should point out that a biharmonic operator satisfying (1.1), with $u \in C^4$ on $\partial \Omega$ is positive definite, and hence its square operator $\sqrt{\Delta^2} = -\Delta$ exists: and is also positive definite. If $u \in D(\Delta^2)$ is an eigenvector of (1.1), then

$$\Delta^{8}u = \lambda \Delta u = -\lambda^{8/2}u$$

and (1.3) becomes

$$(M_{\lambda} - \Delta^2)u = -\frac{h^2}{6} \lambda^{3/2} u + O(h^4). \tag{1.4}$$

Applications of the correction method to the eigenproblems were first introduced by Kuttler^[5], who corrected the 9-point scheme of a Laplace operator. In 1984, one of the authors made some extension of the method^[6].

§ 2. Correction Method of the 21-point Scheme

Let

$$\Omega_h' = \{P \in \Omega_h \mid |Q - P| \leq \sqrt{5} h \text{ implies } Q \in \Omega_h\},$$

$$\Omega_h'' = \Omega_h/\Omega_h'.$$

 Ω'_{h} is the set of regular points and Ω'_{h} is the set of irregular points.

Suppose $P \in \Omega_h^*$. In order to evaluate $M_h u_h(P)$, values of u_h on some points outside Ω have to be defined. This can be done by interpolation. The simplest way is to interpolate along the grid lines. For example, if $P_1 \in \Omega_h^*$ is an irregular point, $P_{-1} \in \Omega_h$, $P_0 \in \partial \Omega_h$, $P_i \in \Omega_h$ (i=2, 3, 4), $P_i = P_0 + ihe_h$, where e_h is the unit vector of the inward normal, then

$$I_{h}u_{h}(P_{-1}) = 10u_{h}(P_{1}) - 5u_{h}(P_{2}) + \frac{5}{3}u_{h}(P_{3}) - \frac{1}{4}u_{h}(P_{4}) \qquad (2.1)$$

has $O(h^6)$ precision. Similarly,

$$\hat{I}_h u_h(P_{-1}) = 6u_h(P_1) - 2u_h(P_2) + \frac{1}{3} u_h(P_3)$$
 (2.2)

is easily proved to have $O(h^5)$ precision. Of course, unequally spaced interpolation formulae on a smooth region are also available.