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Abstract

Mauy types of nonlinear systems can be solved by using ordered iterative methods. These systems
are discussed in [2] in & unified form for five different initial conditions. This paper is a continuation
of [9]. Under arbitrary initial conditions, some iterative methods are given, and zeveral theorems for

the existence and uniqueness of the solution and convergence of the methods are proved.

§ 1. Introduction

In this paper we congider nonlinear sysiems

p(z)=w, zE€ER" (1.1)
Suppose there are fi: B™ X B*—>R, such that
i (ﬂ}) '=f.; (.A. i1, Bim) y "ir 1, 2, see, T (1 . 2)

where A, & R B,C B 0<r, sy<n, fi(dx, Byy) are isotone in o and antitone in
y when the latter are comparable, that is, as a<a’, y=>y, s<y or z=>y, o' <y or
o=y, we have

: fi(Aim? Big)gfi(ﬁim!: Bi'yf)! q’ﬁlr 2! “rty N
Most of the functions discussed in [1] (183.2—13.5) can be written in form of
(1.2). For simplicity, we suppose A=4;, B=B, i¢=1, 2, -»-, n, and consider
p(w) =f(Aw, Bs)—a. (1.3)

Clearly, (1.3) and (1.2) are equivalent.

‘We define some notation ag follows:

(@, x] = {-ui] :r%’w;;fi} is an n—dimensional interval vector, z, s ER",

N={1 2, .-, n}.

Fla, o] = [f(.flm Bx), f(Az, Bx)].

Lylo, 2] =[a+w( f(4z, Bz)—2), z+w(f(Ax, Bx)—x)] where wC R, w>1.

Rz, ] =[2z+Q(f (Azx, Bz) —x), z+6(f(4x, Bm)—-—m)] where @ is a nonnegative
and nonsingular n X n matrix,

We will use the following lemmas.

Lemma 1. (1) F is an inclusion monotonic interval evtension of ¢(z)= f(As,
Bx).

(2) If there exists 1>8>0 such thai
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f(Az, By)—f(4s, By )=B(s—2"), y>=y, 2=
for all comparable =, y and &', o, let 1/(1—-B)=w>1, Then L, is an inclusion
monotonic inierval extension of 1(z) =w+w(f(4s, By)—=).
(3) If there ewisis P& R"™", such thal -
f( Az, By)—f(Aa', BY)<P(y ~y)+ (z—a'), o>y, o=
for all comparable », y and o, y', let Q be @ nonnegative, nonsingular, left subinverse
of P. Then R is an inclusion monotonic inierval evtension of r(z) =z+Q(f(dx, Bwx)

—z). |

Lemma 1 is a conclugion of several theorems in [2].

Lemma 2, Leét f: R"—>R" be continucusly differentiable on R". Assume that
(@) — I is nonsingular and | (f' (o) —I)7| <B< oo for all xC B". Then for any fized
2 C R, there exists a unique continuously differentiable mapping o: [0, 11—>R" such
that . | .

g(m(ﬁ)rt) ﬁw(ﬁ)i : '
¥ (3) = (f (@) —I)"*(a®—2), tE€ [0, 1], 2(0) =2°
where 9(z, 1) =tf (@) + (L—1)d(@), d(@) =F (@) =5+, f(a") =4,

§ 2. Algorithms and Convergence

Algorithm 1. Define initial interval [2° 2°].

1. If F[* 2] N R[Z" «°] N [&", %] = (7, then the algorithm is stopped.

2. [o"1, &) =FL% 3*] N R[* 2*1N " 2"].

Theorem 1. Suppose that f (A, By) is continuous in «, y€ [2° %) and there
are 1>>r>>0, P=diag(p4, pa, ***, Pa) >0, such that

f(A4w, By)—f (42, BY)<P(y —y)+(a—7), (2.1)
|f(Aw, Ba") —w|+ |f(Aa’, Bo) —a'|=r(s—a") (2.2)
for all comparable o, y end &, ¥, y<y/, v=4, 2, ¥, &', of € [2° 2. Then there exists
o unique solution of (1.3) in [«°, z°] if and only if Algorithm 1 can be eonitnued
indefinitely. In this case it yields a sequence {[z" 1} for which

(1) [+, 7] C [o¥, 2¥], (2.8)
7o (T — ) (2.4)

where 0<t—=max {1l—qgu/(g:+1)}, Q=diag(gs, ¢s =, €) >0, QP<I,

lian
lim % = lim % =a';

o Jempo T

(2) there ewists @ unique solution o* =2 of (1.3).
Proof. If there exists a solution &” of (1.3) in [2°, z%], then by Lemma 1 we
have -

#EF[, 7], 2" € R[S, 5.
From Algorithm 1, we have 4" ¢ [, z']. We can easily show by induction that

o* € [z*, 2].



