Vol. 5 No. 4 J'OU RNAL OF OOMPUTATIONAL MATHEMATICS chober 1987

THE MULTIGRID METHOD WITH
CORRECTION PROCEDURE"

Oar Zr1—Qrang (B4 %) |
(Department of Mathematics, Huashong University of Scionce and Technology, Wuhan, China)

§ 1. Introduction

The general form of the MGE method for solving the boundary value problem
of elliptic partial differential equations suggested in {[1] suits both the finite
difference scheme and the finite element scherme resulting from elliptic differential
equations. In order to decrease the number of mulligrid iterations on each level,
Cai ot al. suggested a revised MGE method by using auxiliary grids in [2—8]. For
the special equation —du=f(z, %), we combine the correction procedure with
multigrid method so that the interpolation level number is 1. The computatmna.l
work needed by this method is less than any revised MGE method™~%,

§ 2. The Multigrid Method with Correction Procedure

For simplicity, we consider the model probiem
du=F(z, uw), in Q,
{ (1)
u=g¢, on g4,

where 0 is & one—, two— or three—dimensional domain, and 8Q is the boundary of
the domain Q. Suppose that Q consists of some squares in the two—dimensional case
or of some cubes in the three—dimensional case, and that the solution % is smooth

enough and
fa(u) = fu(w, u)=0. (2)
Quc (k=0, 1, ++, 1) are uniform discretized grids of the domain, whose
width is A, and
TSyt = Elg -

The ratio of step size £ is usually 2.
Let 4; be the b—point approximation of the Laplace operator 4 in the two-
dimensional case and the 7—point approximation in the three—dimensional case on the

grid 2, ag usual.
Let 4; be the b—point approximation defined by

Bou(@e, ©g) = (Bu(wrthy, vothy) —du(ws, @) /202, (3)
S (w1 the, Tatle) =u(@s+hy, 2o hy) +u(@1+hy, 02+ hy)
+u(@y — Fony T2 — Puy) +ul@y — by, 2o+ )
in the two-dimensional case and the 9-point approximation defined by

R
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A;u‘(m:h T, 53) T (Eu(miihkr' Tyt fy, 5t Ry) —8u(zs, 2, ﬁa))/zﬂtg (4—)
in the three-dimensional case. - | R
Consider the finite difference solution w, defined by 1
| {Alsu’b=f(mr u‘k): ®E L, | “ (5)
w=g9—~hflz, 9)/12, €00, e
and a correction solution g, defined by the linearized finite difference equation |
{(d;“fl(uk))@k#f(mr ) "fi(un)ﬂb+h%f1(ﬂm)f§¢q uk) /4, | meﬂm . * )
p=9—hf(=z, 9)/12, 2€0Q, ' .
The finite difference equations (5) and (6) can be denoted by the abstract equations
Inptyy=F' % _ B wE g (7)
Lipy— T3, (8)
where I, Ly are discretized matrices and w, @, Fy and F* are grid fanctions,
In [4]; Lin and Lu have proved

S tht gyt = W F (2, w) ~u+ O(KY), €T, - (9)
under reasona&la conditions. Tt is obvious that if the following condition |
- u=uy+O), gu=pp+O0(hY), in B, . (10)

is valid, then one has also
Tﬁ-‘a_zq.-i-—;- a“"i:'l'é‘ «f(@, m) =u+O0(A), in B, (11)

In order to avorl solving equations (7) and (8) directly, we wish to find the
approximation= of u; and ¢, indirectly by using the solutions Uz-1 and @,y at the
level #—1. We can prove the following proposition.

Proposition 1. Let &,_,—2h, (b=1, +--, 7): then

2 '“5ir=—1*fr"‘:1L *Pk—i'*'-%é- ﬁrﬁ‘;-_if (@, Uy_1) =ux+0(hi_1), on 0, (12)
Proof. Let u; be the solution of the equation |
(4~ f1(w) s =F (2, we) — falw)um, @€,
{u:=g——1—1§ hif (e, 9), =€0Q. o

Then one may ouvtain

Up—1— U 11;2_ Ae-1v1=0(P4.1), on -f_?ap-i, (18
uﬁ_i (e l:; %-1‘1}2 — O(k;_i), on ﬁk—i (14)
from the proof of Proposition 1 in [4]. Hence
3 L 1 2 1
Z “Ja—i‘]'j{‘ ”n-:l"un‘f'Té- -1 (1;@1+-g-w3)=0(7b§_1). (15}.:
Set
74 -g— vy 1+ % Pa,.

Then we have



