ERROR ESTIMATES OF TWO NONCONFORMING FINITE ELEMENTS FOR THE OBSTACLE PROBLEM*

WANG LIE-HENG (王烈街)

(Computing Center, Academia Sinica, Beijing, China)

Abstract

The linear nonconforming element and Wilson's element for the obstacle problem are considered. Optimal error bounds for both elements are obtained in the case of regular subdivisions of domain Q in R^2 .

§ 1. Abstract Error Estimate

There are a number of works in the analysis of finite element methods for variational inequalities (c.f. [7] and the references therein). Particularly the analysis of F.E.M for the obstacle problem has been studied more or less completely (c.f. [2]—[9]). All these analyses, however, are related to conforming finite elements, except for the mixed type^[3].

In this paper, we will analyse two nonconforming finite elements for the obstacle problem. We first show an abstract error estimate, which is similar to the Second Strang Lemma^[5]. Next, in § 2, we will analyse the linear nonconforming element approximation to the obstacle problem. Finally, in § 3, Wilson's element will be considered for the obstacle problem.

Let Ω be a convex domain in R^2 with piecewise smooth boundary $\partial\Omega$, X a Hilbert space of functions defined on Ω with norm $\|\cdot\|$, K a nonempty convex closed subset in X, and $a(\cdot, \cdot)$ a continuous, X-elliptic, bilinear from on $X \times X$, $f \in X'$ —the dual space of X, with the duality pairing $\langle \cdot, \cdot \rangle$ between X' and X. The abstract variational inequality considered is the following:

$$\begin{cases} \text{find } u \in K, \text{ such that} \\ a(u, v-u) \geqslant \langle f, v-u \rangle \quad \forall v \in K. \end{cases}$$
 (1.1)

The solution of (1.1) will be approximated by the finite element method for a regular subdivision. For each h>0, let \mathcal{T}_h be a regular subdivision on $\Omega^{[5]}$, $\Omega^h=\bigcup_{\tau\in\mathcal{T}_h}\tau$, X_h be a finite element approximate space of X with norm $\|\cdot\|_h$ (either conforming or nonconforming, i.e., $X_h\subset X$ or $X_h\not\subset X$ respectively), and K_h be a convex closed subset in X_h , as an approximation of K. Then the approximate problem of (1.1) is the following:

^{*} Received April 13, 1984.

$$\begin{cases} \text{find } u_h \in K_h, \text{ such that} \\ a_h(u_h, v_h - u_h) \geqslant \langle f, v_h - u_h \rangle_h & \forall v_h \in K_h, \end{cases}$$
 (1.2)

where

$$egin{aligned} a_h(u_h,\ v_h) &= \sum_{ au \in \mathscr{T}_h} a(u_h|_{ au},\ v_h|_{ au}), \ &\langle f,\ v_h
angle_h &= \sum_{ au \in \mathscr{T}_h} \langle f|_{ au},\ v_h|_{ au}
angle, \end{aligned}$$

and $u_h|_{\tau}$, $v_h|_{\tau}$ and $f|_{\tau}$ are the restrictions of u, v and f on the element τ respectively.

Throughout this paper we will use the notations of Sobolev spaces $H^m(\Omega)$ as in [1] and we assume that C is a generic constant, which may have different values in different places, if not specifically indicated.

We have an abstract error estimate, similar to Second Strang Lemma^[5], as follows:

Theorem 1. Assume that $a_h(\cdot, \cdot)$ is a centinuous, X_h -elliptic, bilinear form on $X_h \times X_h$, and u and u_h are the solutions of problems (1.1) and (1.2) respectively. Then there exists a constant C independent of X_h such that

$$\|u-u_h\|_{\mathbf{A}} < C \inf_{v_h \in K_h} \left\{ \|u-v_h\|_h + \frac{a_h(u, v_h - u_h) - \langle f, v_h - u_h \rangle_h}{\|u_h - v_h\|_h} \right\}. \tag{1.3}$$

The proof is easy and similar to that in [5], so it is omitted.

§ 2. The Linear Nonconforming Element

To begin with, we consider the obstacle problem:

$$\begin{cases} \text{find } u \in K, \text{ such that} \\ a(u, v-u) \geqslant \langle f, v-u \rangle \quad \forall v \in K, \end{cases}$$
 (2.1)

where

$$K = \{v \in H^1(\Omega) : v \geqslant \psi \text{ a.e. in } \Omega, v = g \text{ on } \partial\Omega\},$$
 (2.2)

$$\begin{cases} a(u, v) = \int_{\Omega} (\nabla u \cdot \nabla v + u \cdot v) dx, \\ \langle f, v \rangle = \int_{\Omega} f \cdot v \, dx \end{cases}$$
 (2.3)

and $f \in L^2(\Omega)$, $g, \psi \in H^2(\Omega)$, $g \geqslant \psi$ on $\partial \Omega$.

We now solve problem (2.1) using the linear nonconforming finite element approximation. Let B_i $(1 \le i \le 3)$ be the midpoints of edges of triangle $\tau \in \mathcal{F}_h$, and X_h be a space consisting of the piecewise linear functions with nodes at B_i , which is

Crouzeix-Raviart's element space (r=1). Let K_h be a convex subset of X_h as follows:

Fig. 1

$$K_h = \{v^h \in X_h: v^h \geqslant \psi \text{ at the nodes in } \Omega^h, v^h = g(P_m)$$

at the nodes m on $\partial \Omega^h\}$, (2.4)

where P_m is the intersection point of $\partial\Omega$ with the outer normal at the node m on $\partial\Omega^n$ (Fig. 1).

The linear nonconforming finite element approximation of (2.1) is the following: