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Abstract

The linear nornconforming element and Wilson’s element for the obstacle problem are corsidered.
Optimal error bounds for both elements are obtained in the case of regular subdivisions of domain &
in B3,

S Abstract Error Estimate |

' There are ‘a number of wurks in the analysis of finite element methods for
variational inequalities (o.f. [7] and the references therein). Particularly the
analysis of F.E.M for the obstacle problem has been studied more or less completely
(c.f. [2]—[9]). ALl these analyses, however, are related to conforming {inite
elements, except for the mixed type'®.

In this paper, we will analyse two nohmnforming finite elements for the
obstacle problem. We first show an abstract error estimate, which is similar to the
Second Strang Lemma™, Next, in § 2, we will analyse the linear nonconforming
element approximation to the obstacle problem. Finally, in § 3, Wilson’s elemont
will be considered for the obstacle problem.

Let 2 be a convex domain in RB? with piecewise smooth boundary 00, X a

.|, K a nonempty convex closed

subset in X, and a(+, +) a continuous, X-elliptic, bilinear from on X' XX, f&

'—the dual space of X, with the duality pairing <., > between X " and X,
The abstra.ﬁt Varmtmnal mequahty considered is the following:

{ﬁnd v € K, such that
a(u, v—u)={f, v—u) VwGE

The solution of (1.1) will be approximated by the finite element method ior a
regular subdivision. For each 2>>0, let .75 be a regular subdivision on Q' @~
U 7z, X, be a finite element a.pprﬂiimafe space of X with [l (either

TETr

conforming or nonconforming, i.e., X ;,CX or X,& X respectively), and K; be a’
convex closed subset in X3, as an apprommatmn of .E' Then the approximate
prob]em of (1. 1) is the followmg

(1.1)
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{ﬁnd u, & K, such that (1.2)
_ﬂh(ﬂh; Un— u’h) ?f“:f: Uh—Unon VO E Ky, -
whers ? ; :
@y Uy, ’Lh) 1_2 ﬂ(‘uh.n %H):
<f: Un h_TZhg\'n 'Uh 'F>:

and uly, wa|s and fl; are the restrictions of ¥, v and f on the element =
respoctively.

Throughout this paper we will use the notations of Sobolev gpaces H™(Q2) as in
[1] and we assume that O i3 a generie constant, which may have different values in
different placey, if not specifically indieated.

We have an abstract error estimate, similar to Second Strang Lemma™’, as
follows: |

Theorem 1. Assume that ap(+, ) is a ccntinuous, X y-elliptic, bilinear form on
X% X, and u and u, are the sclutions of problems (1.1) and (1.2) respectively. Then
there ewists o constant C independent of X, such thal

[~ usfa<C int {uu—%uh 2 (%, Vp=th) = <F, th—ths } (1.8)
| . raCHy "uﬁ_'uﬁylﬁ
The proof is eagy and similar to that in (5], so it i3 omitied.

§ 2. The Linear Nonconforming Element

To begin with, we consider the cbgtacle pi‘ﬂb']em:
| {ﬁnd uE€ K, such that
a(u, v—u)={f, v—uy VeEK,

K={w€ HI(O): 9= a.e. in Q, rv=§ on &4}, | (2.2)

(2.1)

where

a(u, m)=j (VuVo+u-0)de,
(2.3)
<f: ﬂ:”-_"[ f v dw

and 1€ Lﬂ(.Q), g, W E H?*(Q2), g=y on 24Q.

We now solve problem (2.1) using the linear nonnonformmg finite element
approximation. Let B, (1<<4<<8) be the midpoints of edges of triangle v& .73, and
X, ke a space consisting of the piecewise linear functions with nodes at B;, whmh is

| Crouzeix-Raviart’s element space (r = 1) Le’n K, ha a
P 8 3 cﬁnvex subset of X, as follows: '

-/[J\_m i = {* € X;: v*>= at the nodes in Q" w" g(Pm) o
* oo . at the nodes m on 82, | . (2.4) |
| : ‘where P,, is the intersection point of 2Q with the outer

g & normal at the node m on 2@ (Fig. 1)..

The linear nonconforming finite element a,ppromma,twn of (2 1) is the_
.f{}llﬂw.mg s




