NUMERICAL ANALYSIS OF BIFURCATION PROBLEMS OF NONLINEAR EQUATIONS***

LI KAI-TAI (李开泰) MEI ZHEN (每 飯) ZHANG CHENG-DIAN (张承钿)
(Xi'an Jiaotong University, Xi'an, China)

Abstract

The paper presents some essential results of branch solutions of nonlinear problems and their numerical approximation. The general theory is applied to the bifurcation problems of the Navier-Stokes equations.

§ 1. Introduction

The purpose of this paper is to study the bifurcation problems of the nonlinear equation

$$F(\lambda, u) = u + T(\lambda)G(\lambda, u) = 0 \tag{1.1}$$

and its discretized form

$$F_{h}(\lambda, u) = u + T_{h}(\lambda)G(\lambda, u) = 0, \qquad (1.2)$$

where we assume that for some Banach spaces V and W, $\{T(\lambda); \lambda \in \Lambda\}$ and $\{T_{\lambda}(\lambda); \lambda \in \Lambda\}$ are two families of linear bounded mappings from W into V, h is the discrete parameter which tends to 0, and $G(\lambda, u)$ is a nonlinear mapping from $\Lambda \times V$ into W, Λ being a subset of a Banach space.

We consider the bifurcation of the continuous problem (1.1) and the convergence of its numerical approximations. The outline of the paper is as follows.

Section 2 is devoted to general analysis of singular points of nonlinear mapping F and parameterization of its branch solutions. In Section 3 we discuss the approximation of simple limit points of F. Section 4 deals with the numerical prediction of a singular point of F. The bifurcation problem of the Navier-Stokes equations is considered in Section 5 and Section 6 provides a numerical method for computing its branch solutions.

§ 2. Simple Singular Points

Let V, W be Banach spaces, and Λ a subset of a Banach space. Suppose that

1) $G: A \times V \rightarrow W$ is a O^m $(m \ge 2)$ bounded mapping;

2) T, T_h : $\Lambda \times W \to V$ are C^m bounded mappings with respect to λ and for any fixed $\lambda \in \Lambda$, $T(\lambda)$, $T_h(\lambda) \in L(W, V)$.

Define the mappings F, F_h : $\Lambda \times V \rightarrow V$ at follows:

^{*} Received June 1, 1984.

¹⁾ Projects Supported by the Science Fund of the Chinese Academy of Sciences.

$$F(\lambda, u) = u + T(\lambda) \cdot G(\lambda, u) + u^*,$$

$$F_h(\lambda, u) = u + T_h(\lambda) \cdot G(\lambda, u) + u^*,$$
(2.1)

where u^* is a given point in V.

Theorem 2.1.[7] Let Λ be a compact set and $u(\lambda)$: $\Lambda \rightarrow V$ be a nonsingular solution of F, i.e.

1) $F(\lambda, u(\lambda)) = 0$, $\forall \lambda \in \Lambda$;

2) $D_uF(\lambda, u(\lambda))$ is an isomorphism on V;

3) $u(\lambda)$ is a O^m mapping.

If in addition the following conditions are satisfied:

i)
$$\limsup_{h \to 0} \|D_{\lambda}^{l} T_{h}(\lambda) - D^{l} T(\lambda)\| = 0$$
, $0 \le l \le m$, (2.2)

ii)
$$\sup_{\lambda \in A} \|D_{\lambda}^m T_{\lambda}(\lambda)\| \leq C$$
, C is independent of h , (2.3)

then there exist constants a, ho, $K \ge 0$, such that if $h \le h_0$, there is a unique C^m mapping $u_h(\lambda): \Lambda \rightarrow V \text{ satisfying}:$

$$F_{h}(\lambda, u_{h}(\lambda)) = 0, \qquad \forall \lambda \in \Lambda,$$

$$\|u_{h}(\lambda) - u(\lambda)\| \leq a, \qquad (2.4)$$

and

$$\|D_{\lambda}^{l}u_{\lambda}(\lambda^{*}) - D^{l}u(\lambda)\| \leq K \left\{ |\lambda^{*} - \lambda| + \sum_{i=0}^{l} \left\| \frac{d^{i}}{d\lambda^{i}} \left[(T_{\lambda}(\lambda) - T(\lambda)) \cdot G(\lambda, u(\lambda)) \right] \right\| \right\},$$

$$\forall \lambda^{*}, \ \lambda \in A, \quad 0 \leq l \leq m-1,$$

$$(2.5)$$

where $|\cdot|$ stands for the norm of the Banach space that contains Λ .

Definition. A pair of $(\lambda_0, u_0) \in A \times V$ is called a simple singular point of F if (λ_0, u_0) satisfies:

$$\begin{array}{ll}
 & (2.6) \\
 & 1) \quad F^0 = F(\lambda_0, \, u_0) = 0,
\end{array}$$

2) $T(\lambda_0)D_uG(\lambda_0, u_0)$ is a compact operator and -1 is one of its eigenvalues with algebraic multiplicity 1.

Denote $D_u F^0 = D_u F(\lambda_0, u_0)$, and in the sequel V' stands for the dual space of V and (,) represents the dual pairing between them.

Lemma 2.1. Let (λ_0, u_0) be a simple singular point of F. Then there are $\{\varphi_i\}_{i=1}^p \subset V$, $\{\varphi_i^*\}_{i=1}^p \subset V'$ $(p \geqslant 1 integer)$ such that

$$D_{u}F^{0}\varphi_{i}=0, \quad \|\varphi_{i}\|=1, \quad 1 \leq i \leq p,$$
 $V_{1}\equiv \operatorname{Ker}(D_{u}F^{0})=[\varphi_{1}, \ \varphi_{2}, \ \cdots, \ \varphi_{p}],$
 $(D_{u}F)^{*}\varphi_{i}^{*}=0, \quad \langle \varphi_{i}, \ \varphi_{j}^{*} \rangle =\delta_{ij},$
 $V_{2}\equiv \operatorname{Range}(D_{u}F^{0})=[\varphi_{1}^{*}, \ \varphi_{2}^{*}, \ \cdots, \ \varphi_{p}^{*}]^{\perp},$
 $V=V_{1}+V_{2},$

and

DuFo is an isomorphism from V2 onto V2,

where $[\varphi_1, \varphi_2, \cdots, \varphi_p]$ is a linear space spanned by $\varphi_1, \varphi_2, \cdots, \varphi_p$.

The proof can be found in [10].

For simplicity, we shall write $L = (D_u F^0/V_2)$ as the inverse isomorphism of $D_{\mathbf{u}}F^{0}$ on V_{2} . Let us now define a projection $Q: V \rightarrow V_{2}$ by

$$Qv = v - \sum_{i=1}^{p} \langle v, \varphi_i^* \rangle \varphi_i$$
.