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[NFINITE ELEMENT APPROXIMATION TO
 AXIAL SYMMETRIC STOKES FLOW*

Yive ILUN&.—AH (E&%)
(Peling University, Betfing, China)

We considered in [1] the finite element approximation to axial symmetrio.
Stokes flow in & bounded domain.  The problem for the flow passing an. obstacle in
an unbounded domain is also fréquently encountered.’ In this paper, we are going
{0 give approximate solutions for this problem by an approech stated in [2]. An
fterative mothod™5 is used to calculate the combined siiffness matrix. |

§ 1. The Reduction to a System of Finite Algebraic Equations

Let us oonsider a rigid body in a 8-dimensional space, around which there is
incompressible visogus fluid with. steady velocily u. We agsume that the flow a%
infinity is homogeneous with a velocity ..,
and the Reynolds number is so small that the
sssumption of Stokes flow is accepiable. We can
always roplace w with u—u..; therefore it is no
harm to deem u.=0. Now we give the classical
formulation of the axial symmetrio Stokes flow.
Tot o= (24, %a)€ R?, R: ={z€ R?* ,>>0}, and
introduce in R? the polar coordinates (7, 2).
Suppose there is a broken line I° with end points
ot the we—axis and Q ig the exterior of I in R3
(Fig. 1). Oonsider the following problem: to
find u(e) = (u (), ¥a(@)), p(e), satisfying

v (= V(@:Veiy) /@1 +us/oF) +0p/0my =0, €L,
— oV (1Y) /@1 0/ 03 =0, @E L,
2 (o) + o (@) =0, 2€Q,
- u=u,(e), e€l,
g =0, méaﬂﬂ{ﬁz—o}:

Bty

| k0, p=0, fol=eo; \ - e
where 18 a poatbive. constant and ﬁ*(m)- ig a known funcsion. ... ?’3,;’.-,-\?’.711-..?1 v |
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| ha.i-m in assuming | 'ﬁl*}a}-{[for every point #in Q. (oo fog;gmmimom and.

___——#"-—_ i ” il — . ,
RETTRTICOR R © T Y. kel Gt SRR




119 JOURNAL OF COMPUTATIONAL MmH'EMATms Vol. 4

norm

[aa]=m

1flmes, n=(§] fla0)

are defined and the mrrespond.lng Hilbert Hpaces are dano’ued by Zm8(02). We also
define the norms as

flaso=( 2 |, oulal*=21D%71" )

|l 1.2, 8,0=( |fl iﬂ.ﬂ"’ { f/21]5,8-1.0)"%,

| Flusiwo= (| fiis o+ f13.6.0)""
The oorresponding Hilbert spaces are denofed by Z+4(Q), and Z%* (ﬂ) ig a set such
that F€ Z%4(Q) f and only if F€ Z14(Q) and [D2f /w10, 4-8,0 18 finite. The above
definitions are equivalent to that in [1] when 2 is bounded.
“ Tt H(Q) = Z’""(ﬂ) X Z4(Q), Ho(a) ={u€ H(Q); | s01c0,=0p=0}. Tongider the
bilinear form

a(y, '”)n"'_"-l’j L @1(Vua Vo Vig: Vos-+usos/ef)de, u, vEH @, @
defined in H(Q) x H(Q), and the bi]inea.r form |
b(ﬂl .p)ﬂ _I { (‘51‘”1) i amﬂ (wiﬂﬂ‘) } ’ JHGH(Q)" FEZ‘U,O(Q)’ _ (2)

defined in H(Q) x Z*°(Q). The definitions for bilinear forms with respect to other
domains are similar. Let H(I") be the trace space of H(Q) on I': then the weak
formulation for the original problem is: to find (v, p) € H(Q) XZ“-“(Q), such that

ﬂ(!&,- 'ﬂ)a-l-b(ﬂ_, P)ﬂmo: VQ’EHO(Q): . (3)
b(v, ¢)o=0, VqEZ%°(Q), ¥ (4)
!-frlp_ﬂ-” .. (5)

where o, G H (I') The solution of this problem exists and is unique.
Let us consider the infinite element a.pprﬁmmatmn to problem (3)—(b). We

construct a broken line I: =7, (9), 1| <2 5 which divides £ into Q, and Q,,

where Q, lies 'betwaen I" and I'y and Q, is the exterior of I'y. We assume that I'y is
star-shaped with respect to the point O, i.e. each ray from the point O intersects I,
at most at one point. Hgpecially, it may happen that I'g=TI"; then £, is empty,
Taking a constant £>>1, we consiruct similar ourves I'y, Iy, +++, Iy, - of I’y
with 0 ag the center and: &, &7, -, £%, -+ ag oonstants of proportionality. Let

Q= {(r, 6); E7re(0)<r<ro(0), 0] <3,

Q,,= {(‘r 9): rﬂ(g)‘(f{fafnﬁg), IEI "C-—*}

Domain 2 is triangulated in such a way that ©,, 0y, £2q, - ﬂonswb exactly of
finite tria.ngular elements, and the triangulation of Qy, Oy, «+; &2, +++ is geometrically
simflar. Iii each element, second order interpolation is nsed for « and p is constant,
just as in [1]. For definiteness, we assume tha.t each subdomain Q, ig divided into



