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Introduction

The primary motivation of the work deseribed in this paper comes from [1],
in which Lin Qun and Lii Tao have suwocessfully presented the so—called splitting
extrapolation prooess and obtained a series of extrapolation, correction and combined
algorithms for the solution of multidimensional integral equations and elliptic
equations. These algorithms can give higher accuracy results and are especially
suitable for patallel computation,

In this paper, the idea of [1] is generalized to evolution egquations. It is proved
that, under certain conditions, the finite—difference approximate solution of the
differential problem can be expanded to power series of the mesh width, so that the
splitting extrapolation process pregented in [1] can also be used. Some correction
and combined é,lgorithms for the solution of a heat equation are given, so as to
obtain higher acenracy results. In addition, the accuracy of the method by B. K.
Saul’ev'® taking the arithmetic mean of the non-symmetric schemes is discussed,

1.

In thig seetion we shall confine ourselves to linear evolution equations. An
expression connecting the finite-difference solution with the analytic one will be
given as a starting point of later discussions. As the condition of our main theorem
requires some smoothness for the solution of the differential problem, this paper is
mainly concerned with the Cauchy problem and initial-boundary value problem
with the boundary condition of the first kind for the parabolic equation. 1t is well
known that these problems are properly posed™. As for the hyperbolic equation,
our conclusion will also be true provided that the solution is smooth enough.

In a suitably chosen Banach space, the problem in question can be expressed,
following the notation of [4], by

{ '.:%' U(@) =AU +g(t), 0<i<T,

U(O) “Uﬂ:
where 4 is a linear operator and, as in [4], does not depend on ¢. The boundary

a.1)
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conditions, if any, will be supposed to be homogeneous linear, and be contained in
the definition of the domain D(A4).
In solving problem (1.1) by the difference method, we choose mesh widths
At = ko, Ay = hy = ¢, (4t), and suppose ¢, (4t) —>0 as 4#—>0, i=1, 2, «--, p. The
corresponding difference scheme is denoted by |
{ B, (4t)urt = By(4)u+ 9“,
=,

where »* is the numerical approximation to U(ndt), g*=g(ndt), and B, (At) B(4¢)
are linear difference operators.

The difference problem (1.2) is said to provide a consistent approximation for
the initial-value problem (1.1) if, for any function (¢, X) having continuous
partial derivatives up to the order m+1, and u(3) € D(4),

By(4t) u(t+ 4) — Bo(48) u(d) { 8 —A}u(t)ﬁ
=| B (Bau) (@A +OR™), - (1.3)

s | 8 <m

where the integer az>1, h= (ho, Fg, ==+, hﬂ): Zﬂm?x Ay, B_(BO.I B, >, Bﬂ): B: are

positive integers, |B| =R+ Bi+-+By, A =h5h5-hfr and (Rsu) (i) are elements
in the Banach space (in fact they are the derivatives of the funotion (%, X)).

Set O(4t) = B71(4t) By(4t). The finite—difference approximation (1.2) is said to
be stable, if, for some constants v>>0 and M >0,

|O(4t)"| <M, 0<di<7, O<ndt<T. (1.4)

(1.2)

In addition, it is assumed that there exisls a consiant N >0 such that
| BT (48) | < N 41, (1.5)

This condition can be satisfied by usual schemes.

We can now prove

Theorem. If

1) equation (1.1) and the finite-difference approvimation are oconsislent in the
sense of (1.3);

2) scheme (1.2) is stable; and

3) eondition (1.5) is satisfied,
then, for any solution of equation (1.1) hawving continuous partial derivatives of order
2m+1, the following equality holds:

wWw=Uma)+ I V(ndt)R®+Q(nit), (1.6)

®x | 2] St

where V 5(£) are independsnt of kb and |Q(ndt) || =O0(A™1).
Proof. For any smooth solution of (1.1), from (1.3), we have

By (40)U (i+48) — Bu(4)T®) =g+ 3 (R OW+Ro(®),  (1.7)
where |Ro(2)| =0(A™t1). At the mesh points {=ndt, subtmuting (1.7) from (1.2),
we get 1 |
By (4t) (ur ~U 4+ 4} — B(4) (w* ~TU @} = =3 (RO W —Ro(®). (1.8)



