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Introduction

For an aﬂ:it;a.rily refined system of knots, polynomial interpolation does not
guaraniee the convergency. Hence grew the piecewise interpolation. But the
currently widely spread spline interpolation has soms shortcomings in praotical
computation. Adding any new knot, we will have to solve a new linear system of
equations. Besides, spline functions always possess some degree of smoothness, and
the smooth spline interpolation is not a suitable means for approximation of a less
smooth funection, B

In this paper, we introduce a so called “regenerating kernel” B:(+4), with
which to derive a formula of interpolation, and construet a new simple iterative
method. Having got some approximation, we put a new knot in each step,
interpolate the error function and add the result to the previous approximation. In

this way we get another approximation. The formula i very simple and feagible for
computer nuse,

We have proven:

1) With a new knot, the error of approximalion decreases in the sence of
Sobolev norm

b b 3
[Iul[=J uﬂdm+J W) .

2) For an arbitrarily thickened knot system, the iterative process converges
uniformly. |

Actual computation has verified the theory. Error decreased monotonically.
When the knot system was refined, aconracy increased congiderably,

For the Lamp funetion, which has a tarning point (derivative discontinuous at
the origin), our result is better than that obtajned by cubic spline. '
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Definition.

_ 1 " o 2 b.
R.(y) 53h(5—a) [ch(z+y—a—b)+eh(|a Iy] b+a)], o<ed e<y<

The following are evident by definition.

1. R, (y) =R, (2)>0. (1)
2, R.(y) satisfies the differential eqnatmn |
~ PR, §;§ﬂ> LB L], i, (2)
Hence |
2 ;
g 1;;5—") >0, ey (3)
3. | d.%(y) >0, ae<y<az,
" cms; ) @
2\ Y
T - <@, @<y<b.
d Rm('y) gh d'Rm(y) o | B
4! ' dy yma0 dy g=b-0 0’ ﬂ{m{b. | ( )
5. GB(Y) ~ 9B (y) =1, a<o<b; (6)
d‘y =Dl dy y=e+0 ._
i dRu (&_ _— d-Rb(y) e : - ¢
da y=g+0 dy ) y=b-0 - (6 }
6. Using (3), (4), (6), it is easy to prove
dRa(‘y) | | |
- @
7. mex Ri(y) =mex By(y) = Ba(a) = Ba(b) = ghe7 =3 ®
1 et |
min Rn(y) '=Ru(b) =Ry(q) = sh(b—a)’ . | (9)
14+ch(b—a) - m—}—b e | o
min R,(y) = “Tshb—a) y=— o (10)
8. Let Wi= {u|u absolutely continuous, v & I?[a, b]}. For u, wEW%, we defing

the inner produoct

Now, we verify

For a<z<b,

- (Ro(w), u(®)) = j j +f m(*y)u(y)dw(j

(u; v) ==J: U dw.+J’:u’w' de.
(Bo(+), u(+))=u(z), a<az<b. | (11)

+Ii+f+) R (y)v' (y)dy
[T (=R @)+ Ru@))ulwddy + [ (~ Biw) + Ra(@))u(y)ay



