CARDINALITIES OF RESTRICTED RANGES*

SHI YING-GUANG (史应光)

(Computing Center, Academia Sinica, Beijing, China)

I

Abstract

Let l and u be upper and lower semicontinuous extended functions on [a, b], respectively, with $l \le u$. Let H be an n-dimensional Haar subspace and $K = \{p \in H : l \le p \le u\}$. This paper gives complete characterizations of K satisfying

 $\operatorname{card} K = 0 \text{ or } 1 \text{ or } \infty$

under certain assumptions, where card K denotes the cardinality of K.

1. Introduction

In approximation by polynomials having restricted ranges⁽¹⁾ and in simultaneous approximation⁽²⁾ the following problem may be proposed:

Let l and u be upper and lower semicontinuous functions on $X \equiv [a, b]$ (which may take $-\infty$ and $+\infty$, but $l < +\infty$ and $u > -\infty$), respectively, with $l \le u$. Let H be an n-dimensional subspace of C(X) and $K = \{p \in H : l \le p \le u\}$. Characterize K such that

$$\operatorname{card} K = 0 \text{ or } 1 \text{ or } \infty$$
,

where card K denotes the cardinality of K.

In this paper we give an answer to this problem for H being a Haar subspace. In detail, we give complete characterizations of K satisfying card K=0 or 1 or ∞ under certain as sumptions.

To begin with let us introduce the following notation.

For $p \in H$ denote

$$X_{p}^{l} = \{x \in X : p(x) \leq l(x)\},\$$
 $X_{p}^{u} = \{x \in X : p(x) \geq u(x)\},\$
 $X_{p} = X_{p}^{l} \cup X_{p}^{u},\$
 $\sigma(x) = \{1, x \in X_{p}^{l},\$
 $\sigma(x) = \{-1, x \in X_{p}^{u},\$

By definition if p(x) = l(x) = u(x), $\sigma(x)$ may take both 1 and -1.

A system of n+1 ordered points

$$x_1 < x_2 < \cdots < x_{n+1} \tag{1}$$

in X_p is said to be an alternation system of p (with respect to (l, u)) if it satisfies

$$\sigma(x_{i+1}) = -\sigma(x_i), \quad i=1, \dots, n. \tag{2}$$

It should be pointed out that the restrictions on I and u being upper and lower

^{*} Received January 20, 1983.

semicontinuous are trivial, because for any l and u we can assume

$$\bar{l}(x) = \limsup_{y \to x} l(y), \quad \bar{u}(x) = \liminf_{y \to x} u(y)$$

instead, which are upper and lower semicontinuous, respectively^[5], and satisfy that card $K = \operatorname{card} \{ p \in H : \bar{l} \leq p \leq \bar{u} \}$,

To verify the last equality we note that, on the one hand, from $l \le \bar{l} \le \bar{u} \le u$ card $K \ge \operatorname{card} \{p \in H : \bar{l} \le p \le \bar{u}\}$ follows, and on the other hand, $l \le p \le u$ implies

$$\limsup_{y\to x} l(y) \leqslant \limsup_{y\to x} p(y) = \liminf_{y\to x} p(y) \leqslant \liminf_{y\to x} u(y),$$

namely, $l(x) \le p(x) \le \bar{u}(x)$, from which card $K \le \operatorname{card} \{p \in H : \bar{l} \le p \le \bar{u}\}$ follows.

2. Main Theorems

Theorem 1. Let l < u and let H be an n-dimensional Haar subspace. Then for $p \in K$ the following statements are equivalent each to other:

- (a) $K = \{p\}$, i.e., card K = 1;
- (b) $\max_{x \in X_p} \sigma(x) q(x) \ge 0$, $\forall q \in H$;
- (e) $\max_{x \in X_p} \sigma(x)q(x) > 0$, $\forall q \in H \setminus \{0\}$;
- (d) $0 \in \mathcal{H}\{\sigma(x) \, \hat{x} : x \in X_g\}$, where \mathcal{H} denotes the convex hull [4, p. 17] and $\hat{x} = (\emptyset_1(x), \dots, \emptyset_n(x))$ with $\emptyset_1, \dots, \emptyset_n$ being a basis in H;
 - (e) p possesses an alternation system with respect to (l, u).

Proof. (a) \Rightarrow (b). Suppose not and let q satisfy $\max_{x \in X_p} \sigma(x) q(x) < 0$, i. e., $\sigma(x)q(x) < 0$, $\forall x \in X_p$. We are to prove that $r_t = p - tq$ satisfies $l < r_t < u$ for some t > 0. Hence from $r_t \neq p$ a contradiction occurs.

Let
$$h = \frac{1}{2} \min_{x \in X} \{u(x) - l(x)\}(>0)$$
 and $e = \max_{x \in X} |q(x)|$. Denote $Y_1 = \{x \in X : p(x) - l(x) > h \text{ and } q(x) > 0\},$ $Y_2 = \{x \in X : u(x) - p(x) > h \text{ and } q(x) < 0\},$ $Y = X \setminus (Y_1 \cup Y_2).$

Taking $t_1=h/e$, we have that for $x \in Y_1$ and $0 < t \le t_1$

$$r_t(x) = p(x) - tq(x) > l(x) + h - t_1 e = l(x)$$

and

$$r_t(x) = p(x) - tq(x) \le u(x) - tq(x) < u(x),$$

that is,

$$l(x) < r_t(x) < u(x). \tag{3}$$

Similarly, (3) holds for $x \in Y_2$ and $0 < t \le t_1$.

On the other hand, it is easy to see that $X_p \subset Y_1 \cup Y_2$ and, hence,

$$l(x) < p(x) < u(x), \forall x \in Y.$$

Since Y is compact, we can find a number $t_2>0$ so that (3) is also valid for all $x\in Y$ and $0< t \le t_2$.

Thus $l < r_t < u$ is valid for $t = \min\{t_1, t_2\}$.

(b)⇒(d). (b) implies that the linear inequalities