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A bstract

This note presents 2 splitting extrapolation process, which uses successively one-dimensional
extrapolation procedure along only one variable with other variables kept fixed. This splitting technique
is applied to the numerical cubature of muliiple integrals, multidimensional integral equations and the
difference method for solving the Poisson equation. For each case, the corresponding error estimates are
given. They show the advantage of this method over theisotropic extrapolation along all the variables.

1. Introduction

The extrapolation method is a simple and effeotive numerical method for computing
integration and solving differential equations in the case of one dimension. For the
multidimensional problems one can use extrapolation process along all variables
homogeneously, but the effort will be high. This note pregents the so called splitting
extrapolation process, which uses the one—-dimensional exirapolation process along
only one variable, the other variables fixed. We hope this method is appropriate for
the parallel algorithm and will save computational effort in eomparison with the

isotropic extrapolation.

2. Multiple Integrals

We are concerned with tho s-dimensional integral in a cube:
e Lf(m)dzv with V=[—1, 1],

Lot us divide Vin cuboids of length A= (b, *-, hs).

Bt TR WA
c V=0, Vil Me- A, S,

f=1

where M;= (M, -, M,;,) is the center of V;. We define the rectangular cubature by
Ip(hy, ==, ha) =j_21 meas (V) f (M)

and the trapezoidal cubature by

IT(}?L ey h’s) =.§:1 %’8" IIlEi&S(V;) (f(N;t) +f(N.4_i)):

i=1
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where Nj;;=(My, - Mﬂﬂ:%f—, «-o, M;,) are the centers on the faces of V,,
The principle of splitting extrapolation bases on the following asymptotic
expansion.
Theorem 1. For £ € 09D (V) ws have
I—Ta(hy, =, k)= 3} 03, B +0(3"*%) @
1< k<

wiih the coefficients cey indepondent of h and
pr= (Pi; =S PI): |pl =p1+'"+.ph hq.:hq:...}agaj ho.__'ma'x{hi: oy E}-
Proof. Note first that

I=Iy(h, o, ) =3 (f (@) ~F () da, ey
Then insertion of the Taylor expansion

f@)—fM)= 2 "k_ll"f(m(ﬂff) (@ —M)°+0 (R§™**)

ip =
1<k<2m41

into (2) and use of
0 if ¢ contfains an odd component g,

2, _ V h\?F
L’, (—Mp)%dw= A smea.s( i) ( 5 ) when ¢=2p
h E (1+2p)

I—=TIg(hy, ==, by =) ¥ he €L 7> F‘WW’) M +0(A5™+2),
(2k) | g(l-!-zp;)(z)

By induction we assume that (1) holds for 2<<m and come to prove it for m-+1.
In fact for f€ G ()

L—Tg(hy, =, h,)zi E jmﬂ(%) meas (V) (g)ﬂp + 0 (A2m+4)

R bl (26) 1 1A+ 20)

i=1

N L JOT NS )

e LT (2k) 'H (1+2p;)
-3 (F@ (z) — F@ (M) 51 AN 10 (p2mH
G Ll ‘L‘* : (2k) IH (1+2py) ( . ) )
- 3 [ @i — 1 1§
ity I (2k) !H(1+2 ;) (2)
P AP I G ORY L6 )T M — (3)" +ouss,
1< il ] | (2*@ !HL(]-‘;‘L)?Q

Then substitution of the asymptotic expansion (1) for k<m into



