A NEW VERSION OF ITERATIVE METHOD FOR SOLVING RIEMANN PROBLEM*

TENG ZHEN-HUAN(縣振衰)

(Department of Mathematics, Beijing University)

Abstract

A new version of iterative method for solving Riemann problem of gas dynamics is presented. In practice the new procedure exhibited a good convergence in cases where Riemann solution involves a strong rarefaction wave or two rarefaction waves. In the other cases the new version is identical with Godunov procedure.

Introduction

Riemann solutions are the building blocks of several numerical methods for solving the equations of gas dynamics (see [1], [3], [4], [7]). The usefulness of these methods depends on the possibility of solving the Riemann problem accurately and effectively. Generally speaking, Godunov iterative procedure provides an approximating solution to the Riemann problem ([3], [5]). But as noted by Godunov, the iteration may fail to converge in the presence of strong rarefaction. To overcome this difficulty Chorin gave a modified iterative method [1]. In this paper we present a new version of iterative method. In practice we find that the new version is more effective in cases where the Riemann solution consists of two rarefactions or a rarefaction plus a shock where the rarefaction is stronger than the shock. In the other cases the new version is identical with Godunov procedure.

The New Version of Iterative Procedure

Consider the gas dynamics equations

$$\begin{cases} \rho_{t} + (\rho u)_{x} = 0, \\ (\rho u)_{t} + (\rho u^{2} + p)_{x} = 0, \\ e_{t} + ((e+p)u)_{x} = 0, \end{cases}$$
(1)

where ρ , u, ρu , e and p, respectively, denote the density, velocity, momentum, internal energy, and pressure of the gas, and

$$e = ps + \frac{1}{2}\rho u^2$$

is the total energy of the gas. For polytropic gases s is given by the constitutive relation

$$e = \frac{1}{\gamma - 1} \frac{p}{\rho},$$

Beceived August 31, 1982.

where γ is a constant larger than one.

The Riemann problem for (1) will have the initial data

$$(\rho(x,0), u(x,0), p(x,0)) = \begin{cases} S_l = (\rho_l, u_l, p_l), x < 0, \\ S_r = (\rho_r, u_r, p_r), x > 0. \end{cases}$$

It is well-known that the solution consists of a right state S_r , a left state S_l , a middle state $S_*(p=p_*, u=u_*)$, separated by waves which are either rarefactions or shocks. S_* is divided by the slip line

$$\frac{dx}{dt} = u_{\bullet}$$

into two parts with possibly different values of ρ_* , but equal values of u_* and p_* .

The new version of procedure is as follows:

1. In case of $u_l < u_r$, the iterative method first computes u_* in the state S_* . Define the quantity

$$M_r = (p_r - p_*)/(u_r - u_*)$$
 (2)

The relation between S_* and S_r can be written ([2],[7]) as

 $u_* = u_r + \varphi(p_*; p_r, \rho_r), \qquad (3)$

where

$$\varphi(p_{*}; p_{r}, \rho_{r}) = \begin{cases} \frac{\sqrt{2} (p_{*} - p_{r})}{\sqrt{((\gamma+1)p_{*} - (\gamma-1)p_{r})\rho_{r}}}, p_{*} \ge p_{r}, \\ \frac{2\sqrt{\gamma}}{\gamma-1} \frac{p_{r}^{1/2\gamma}}{\rho_{r}^{1/2}} (p_{*}^{(\gamma-1)/2\gamma} - p_{r}^{(\gamma-1)/2\gamma}), p_{*} < p_{r}. \end{cases}$$

Upon solving p_* in terms of u_* from (3), we have

$$p_* = p_r + \psi(u_* - u_r; p_r, \rho_r),$$
 (4)

$$\psi(u_{*}-u_{r}; p_{r}, \rho_{r}) = \begin{cases} \frac{\gamma+1}{4}(u_{*}-u_{r})^{2}\rho_{r}\left(1+\sqrt{1+\frac{16\gamma p_{r}}{(\gamma+1)^{2}(u_{*}-u_{r})^{2}\rho_{r}}}\right), u_{*} \geq u_{r}, \\ p_{r}\left(\left(1+\frac{\gamma-1}{2\sqrt{\gamma}}(u_{*}-u_{r})\sqrt{\rho_{r}/p_{r}}\right)^{\frac{2\gamma}{\gamma-1}}-1\right), u_{*} < u_{r}. \end{cases}$$

By substituting p_* of (4) into (2), one gets

$$M_r = (p_r \rho_r)^{1/2} \Psi((u_* - u_r) (\rho_r/p_r)^{1/2}). \tag{5}$$

where

$$\Psi(x) = \begin{cases} \frac{\gamma+1}{4} \left(x + \left(x^{9} + \frac{16\gamma}{(\gamma+1)^{3}} \right)^{1/3} \right), & x \ge 0, \\ \frac{1}{x} \left(\left(1 + \frac{\gamma-1}{2\sqrt{\gamma}} x \right)^{\frac{2\gamma}{\gamma-1}} - 1 \right), & x < 0. \end{cases}$$

Similarly, M_i is defined by

$$M_{l} = -(p_{l} - p_{*})/(u_{l} - u_{*})$$
 (6)

The relation between S_* and S_l is

$$u_* = u_l - \varphi(p_*; p_l, \rho_l),$$
 (7)

or

$$p_* = p_l + \psi(u_l - u_*; p_l, \rho_l)$$
 (8)

From (6) and (7), one gets

$$M_{l} = (p_{l} \rho_{l})^{1/2} \Psi ((u_{l} - u_{*}) (\rho_{l}/p_{l})^{1/2}).$$
 (9)