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Abstract

In this papsr we prove under certain weak conditions that two classes of implicit difference schemes
for the generalized non-linear Schridinger system are convergent and that an iteration method for the
corresponding non-linear difference eguations is convergent. Therefore, quite a complete theorstical
foundation of implicit schemes for the generalized non-linear Schridinger system is established in this

paper.

Convergence of Difference Schemes

We discuss the following initial-boundary-value problem for the generalized
non-linear Schrodinger system:
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Here U, B are complex vectors; A(z), F(x, t) real symmefrical matrices; 8(z),
g{|U|? real scalar funections (|U| denotes the Euclidean vector norm of U); and
G{(z,?) is a real vector. As for ¢(|U7|2), we consider the following functions: |U|*(and
|U |#*, p being a positive integer), »(1—e "), [U|*/A+|U|*), n(1+|U|?), eto.
This problem can be solved by using the following schems
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Here V7% denotes the approximate value of U at o= jdr, {=ndi; F? = F(jd:v,
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positive constani. Clearly, the truncation error is O(4t*+ 42°) for a; = %-, and O (4t 4
dz%) otherwise. Chang' has discussed convergence of this scheme for a;=1.
However, one meets congiderable difficulties when trying to prove the convergence of
this scheme for ay+#1 by using the method in [1]. If a3 %0, one has 10 solve a system
of non-linear equations ab each step. An iteration method for solving the system ig
usually needed, and the iteration is required to be convergent. For the scheme with
0;=0, only a system of linear equations needs to be solved, so this scheme is also

special. Therefore, we pay our attention to the three schemes with n:l——]-'— 1, 0, which

2 2
are called Scheme A, Scheme B and Scheme C regpectively in the following.
We first discuss the stability of Scheme A. Clearly, there are .the following
relations:
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Therefore, subfracting the inner product of V3*14+FV7 and the mnjugate equation of

(2) from that of '+ V7 and (2), and summing up these differences from j=1 to
J—1, we obtain
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Let |\ = dx 2 V3|2, | 677 = d= 2 |G |2, Then it follows from the above relation
and the Schwa.rz mequahty that
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which can be réwri_tten as



