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THE CONVERGENCE OF INFINITE ELEMENT
METHOD FOR THE NON-SIMILAR CASE”

YiNne LuNG-AN(F %)
{Department of Mathematics, Peking University)

We have consgidered the infinite element method for a class of elliplic systems
with congtant coeflicients in [1]. This class can be characierized as: they have the
invariance under similarity transformations of independent variables. For example,
the Laplace equation and the system of plane elastic equations have this property. We
have suggested a technigue to solve these problems by applying this property and a
gelf similar discretization, and proved the convergence. Not only the average conver-
gence of the solutions has been discussed, bul also the term~by-ferm convergence for
the expansions of the solutions. The second convergence manifests the advantage of
the infinite element method, that is, the local singularity of the selutions can be
oaloulated with high precigion.

We have generalized this method to the non-similar case in [2], and obtained
many resullis parallel to that of the similar case, which include the calculation of
the combined stiffness matrices and the discussion of the singnlarity of the solufions.
For conciseness, the Helmholiz equation

— du+Au=0 (1)
and the linear triangular elements will be considered in this paper, but this method
is good for more general equations.

We will prove the average convergence which shows the order of the convergence
of the infinite element method is higher than that of the finite element method if the

golutions possess singularities. At the same time, we will concentrate upon the proof

of the convergence for singular comlponents, which does not exist for the finite
element method.

y 1. Some General Statement

For conciseness we assume that the considered region D is a bounded polygon
region on the x, ¥ plane, one of the vertices of which is the origin, the inner angle
of which is §y>x. If we consider the boundary value problem of equation (1) on this
region, the solution will, generally, possess singularity at point 0. Now we devote
ourselves to the calculation of this singularity. It is no harm fo assume that one of
the neighboring sides of point O is on the positive z—axis and the interior angle is 0<
88,
" Let the neighbering sides of point O be I and I, we construct a neighborhood Q,
of point U in D, which is a polygon region and satisfies the star-shape condition with
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E = L

respect to point O, that is the line segment which connects any point on I, and
point O lies on 0, entirely. I and I are also two sides of £2,, the remaining part of
the boundary of £, is expressed by Io:r=R(8),
where 7, 6 are polar coordinates.

Some boundary conditions are assumed on the
boundary of D, for definiteness we assume that the

Iy

: O ’
homogeneous Neumann condifion -gf- =0 ig assumed J

on I"and!™", where v denotes the normal directoin,
the discussion is similar for other kind of homogeneous boundary conditions.

‘We make the infinite element discretization as usual: D\Q, is discretized into
a finite number of {riangular elements by the conventional way, while Q, is disoretized
into an infinite number of triangular elements as the following: a constant ¢ 0< &<
1, is taken, we construci similar carves of I'p with 0 as the center and £, £3, ..., €%, ...
ag the constants of proportionality, thus, £, is discretized into an infinite number of
“layers”, then we construct the line segments from point O to nodal points on I,
each layer is discrefized into finitfe mumber of quadrilaterals, finally, each quadrila-
teral is disoretfized into friangles, the mode of discretization for each layer is the same.
The inferpolation functions are linear on each element and is continuous on D.

One auxilary unbounded region is needed in the following proof, which is denoted
by Q= {(r, 8) :0<r< oo, 0<<H<0,}, hence 2,Q2. We also discretize region Q\ £,
into infinite number of layers by the constants of proportionality £72, ..., &% ...
then they are discretized into triangular elements by the same mode. The curves r=
§*R(6) (=0, %1, ---)are denoted by I,

The region €2, with its discretization is called a combined element, since squation.
(1) is given, if u is an approximate solution by the infinite element method™, then
the “strain energy’’associated with u; on Q,,

[ vy ] ey

would be determined by tbe values of u, at the nodes of I"y, where V is the gradient

33;;; ;y ) suppose there are m nodes on [',, the values of u, on

which form a m—dimensional vector according to a definite order, say the anti-clock-
wise order, which is denoted by 7. A technique in [2] is given to calculate the
combined stiff ness matrix K,(A), then for any boundary value 4,, the strain energy of

operator. V: (

the appro:z:imai;e solution w, associated with 4, on 2, is expressed by -;— Yo K+ (M) 9,

where T’ denotes transpose. £2, can be treated as one element by means of the matrix
K,.(A), we can solve this algebraic system as ordinary finite element method hy
assembling this combined element with conventional elements on D\£2,. We denote
the values of v, at the nodes of 7', by vectors ¢, (k=1, 2, --) just as 4. When we
consider the apprommatﬂ solutions on £, we also use the symbols 4, for negative
indices %,

We agsume that the above discretization is normal, that is, any itwo closed
triangular elements possess either a common vertex or a common side, or no common
point at all. We assume also all the inner angles of elements have an upper bound



