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Abstract

This paper is concerned with a multi-domain spectral method, based on an interior

penalty discontinuous Galerkin (IPDG) formulation, for the exterior Helmholtz problem

truncated via an exact circular or spherical Dirichlet-to-Neumann (DtN) boundary con-

dition. An effective iterative approach is proposed to localize the global DtN boundary

condition, which facilitates the implementation of multi-domain methods, and the treat-

ment for complex geometry of the scatterers. Under a discontinuous Galerkin formulation,

the proposed method allows to use polynomial basis functions of different degree on dif-

ferent subdomains, and more importantly, explicit wave number dependence estimates of

the spectral scheme can be derived, which is somehow implausible for a multi-domain

continuous Galerkin formulation.
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1. Introduction

Time harmonic wave propagations appear in many applications, and a variety of situations

requires to solve the Helmholtz equation exterior to a bounded obstacle (or scatterer):















−∆u− k2u = f, in Ωe := R
d \B,

u = g, on ΓB := ∂B,

∂ru− iku = o
(

r
1−d
2

)

, as r → ∞,

(1.1)

where k > 0 is the wave number, B ⊂ R
d, d = 2, 3 is a scatterer with Lipschitz boundary ΓB,

and the far-field boundary condition is known as the Sommerfeld radiation condition. On the

surface of the obstacle B, the Dirichlet boundary condition corresponding to sound soft surface

of B is imposed, while the Neumann or Robin boundary condition relative to sound hard or
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impedance surface, respectively, may also be prescribed in practice. In fact, the method to be

proposed in this paper works for these possible boundary conditions.

Apparent challenges in solving the exterior Helmholtz equation lie in (i) the domain is

unbounded, (ii) the problem is indefinite, and (iii) the solution is highly oscillatory (when the

wave number is large) and decays slowly. There is a vast literature devoted to its numerical

solutions such as boundary element methods [9], infinite element methods [17], Dirichlet-to-

Neumann (DtN) methods [23], perfectly matched layers (PML) [6], among others. In many of

these approaches, it is essential to truncate the unbounded domain to a bounded domain by

imposing an exact or approximate non-reflecting boundary condition at the outer boundary.

Formally, the problem (1.1) reduces to















−∆u− k2u = f, in Ω := ΩR \ B̄,
u = g, on ΓB,

∂ru+Gu = 0, on ΓR,

(1.2)

where ΩR is an artificial domain that encloses the bounded scatterer B and contains the support

of f, and the Robin boundary involving the operator G describes a typical transparent or non-

reflecting boundary condition on the outer boundary ΓR of ΩR. For instance, G can be the

Dirichlet-to-Neumann operator, which has a series expansion when ΩR is a separable domain,

e.g., disk, ball, ellipse and ellipsoid.

In the past two decades, there has been an intensive research on the finite element dis-

cretization of (1.2) in various situations (see, e.g., [3–5, 20–22] and the references therein). It

is known that when the wave number k becomes large, the mesh size h should be adapted to

k so as to resolve the waves. In two or higher dimensions, under the “rule of thumb” mesh

constraints kh . 1, the pollution effect exits for all degrees of approximation and deteriorate

the error estimates [20]. Thus, it is important to appreciate how the numerical errors depending

on the wave numbers. Babus̆ka et al. [20–22] conducted a rigorous analysis using the (discrete)

Green’s functions, and Douglas et al. [13] used a different argument due to Schatz [32]. How-

ever, these approaches may not be applicable to (1.2) with a slightly complicated setting of

boundary conditions or scatterers. Recently, some methodology was developed in [11, 24] (also

see [7, 19, 25, 34]) for the a prior estimates of the solution of (1.2) in a star-shaped domain Ω.

The spectral method, which is vitally free of dispersive errors, is well-suited for wave sim-

ulations. With a proper boundary perturbation technique (or the so-called transformed field

expansion) [28], the Helmholtz equation (1.2) with exact DtN boundary condition can be re-

duced to a sequence of Helmholtz equations in a separable domain, e.g., an annulus and a

spherical shell (cf. [14, 29, 30, 33]). Shen and Wang [35] provided a rigorous analysis of the

spectral-Galerkin method with explicit dependence of the errors on the wave number for the

Helmholtz equation in an annulus or spherical shell with exact DtN boundary condition. The

analysis for full coupled spectral-Galerkin and boundary perturbation was conducted in [30].

Indeed, within the domain of applicability of the boundary perturbation method, this approach

has proven to be fast and accurate. However, an element method is more desirable, when the

scatterer is complex with a large deviation from a “simple” domain.

The purpose of this paper is to propose and analyze a multi-domain spectral interior penalty

discontinuous Galerkin (in short, p-IPDG) method, for (1.2) with an exact DtN boundary

condition. We advocate a DG formulation for two reasons:

(i) flexibility for general scatters and benefit of p-adaptivity (different orders of polynomials


