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Abstract

Some models dealing with fibers and liquid crystals can be formulated probabilistically

in terms of orientation distributions. Since the orientation of a thin object can be specified

by a point in a real projective plane this approach leads to elliptic and parabolic problems

in the real projective plane. In most previous works these kind of problems have been con-

sidered on the unit sphere which is a double cover of the real projective plane. However,

numerically this is inefficient because the resulting systems of equations are unnecessar-

ily big. We formulate the problem directly in the real projective plane using a certain

parametrization with three coordinate domains. After reducing the computations to the

coordinate domains we can then use finite elements almost in a standard way. In particular

the standard error estimates with usual Sobolev spaces remain valid in this setting. We

consider both elliptic and parabolic cases, and demonstrate the validity of our approach.
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1. Introduction

In this article we are interested in computing the solutions to elliptic and parabolic problems

in the real projective plane using finite element methods. These kind of problems arise in

various applications: dilute suspension of wood fibres [7, 19,21], liquid crystals [8, 17] and even

the analysis of images [4]. In all cases the unknown function is a probability distribution of the

orientation of the fibers or liquid crystals or other objects.1) Recall that the orientation of a

rigid body can be specified by a point in SO(3) which is diffeomorphic to the real projective

space RP3. Now in the applications described in the references cited above one may assume

that the object is in fact a very thin rod so it is reasonable to ignore its rotation around its

long axis. Hence the orientation can be specified by a point in the real projective plane RP2.

In all previous publications that we are aware of the relevant equations have been analyzed

on the unit sphere S2 instead of RP2. This is possible since S2 is the 2 sheeted covering space

of RP2. Hence one obtains correct results if one assumes that all relevant functions satisfy

f(p) = f(−p) and vector fields satisfy w(p) = −w(−p). Anyway it would appear more natural

to do the analysis directly on RP2.

There has also been some interest in the numerical solution of the models discussed above,

see for example [2,5,6,11,12] and references therein. In these numerical studies the problem has
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1) The relevant equation is sometimes called Smoluchowski equation or Fokker-Planck equation.
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also been analyzed in S2. Numerically this is not anymore equivalent to doing the computations

in RP2. In the discretization there are in this case twice as many unknowns than necessary, and

hence the numerical cost of solving the corresponding linear system is typically 4 to 8 times

more expensive. In particular in time dependent problems where a linear system must be solved

at each time step, the amount of unnecessary computation can be quite substantial.

In previous numerical studies typically S2 has been regarded as a submanifold of R3. Hence

one part of the discretiztion error is that one approximates S2 by some other structure. This

approach would be somewhat involved with RP2 because it cannot in any case be embedded

in R3. However, such an embedding is unnecessary and we will below show how to introduce

some convenient parametrizations of RP2 which allows us to do computations directly on RP2.

Note also that S2 and RP2 cannot be parametrized using a single coordinate patch. For

example using the spherical coordinates, like in [2], to parametrize S2 creates artificial singular-

ities at the poles. While it is possible to mitigate the effects of these singularities by appropriate

numerical tricks this nevertheless has an adverse influence on the stability and accuracy of the

computations. In our approach we cover RP2 with 3 coordinate patches and hence there are no

singularities due to parametrization.

The content of the article is as follows. In Section 2 we recall some background material

form Riemannian geometry and PDE theory. In Section 3 we describe the discretization of the

problem which reduces the computations to the standard finite element setting. In Sections 4

and 5 we present the numerical results in some elliptic and parabolic test cases and finally in

section 6 we give some conclusions and perspectives for future work.

2. Preliminaries

We start by recalling some facts from the theory of PDEs and differential geometry. More

details can be found in [9, 13,14,18,23].

2.1. Differential geometry

Let g be a Riemannian metric on some smooth manifold M . The components of g in the

coordinate system are denoted by gij , and the resulting matrix is G. The components of G−1

are denoted by gij . Let M be a Riemannian manifold with boundary ∂M . The canonical

volume form of M is denoted by ωM and the volume of M is thus vol(M) =
∫
M
ωM . The

induced volume form on ∂M is denoted by ω∂M . In case of nonorientable manifolds ωM is

interpreted as Riemannian density.

Then if w is some vector field on M we can define the gradient of u by the formula

g(grad(u), w) = duw = w(u).

The standard gradient (resp. divergence and Laplacian) operator in Euclidean spaces is denoted

by ∇ (resp. ∇· and ∆) as usual. In a coordinate system we can write

grad(u) = G−1∇u =

n∑
i=1

n∑
j=1

gij
∂u

∂xj

∂

∂xi
,

g(grad(u), grad(v)) = ⟨∇u,G−1∇v⟩.


