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Abstract

We consider the numerical solution by finite difference methods of the heat equation
in one space dimension, with a nonlocal integral boundary condition, resulting from the
truncation to a finite interval of the problem on a semi-infinite interval. We first analyze
the forward Euler method, and then the #—method for 0 < # < 1, in both cases in
maximum-norm, showing O(h? + k) error bounds, where h is the mesh-width and k the
time step. We then give an alternative analysis for the case § = 1/2, the Crank-Nicolson
method, using energy arguments, yielding a O(h? + k3/2) error bound. Special attention
is given the approximation of the boundary integral operator. Our results are illustrated
by numerical examples.
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1. Introduction

We are concerned with the numerical solution of the parabolic problem on a semi-infinite

interval,
Ut = Ugy + f(2, 1), forz >0, t>0, (1.1a)
u(0,t) = b(t), for t > 0, (1.1b)
u(z,0) = v(x), for z > 0, (1.1c)
u — 0, for z — 400, (1.1d)

where f(x,t) and v(z) vanish outside a finite interval in z, which in the sequel we normalize
to be [0,1). To be able to use finite difference or finite element methods for this problem, it
is useful to truncate it to this finite spatial interval. This necessitates setting up a boundary
condition at the right hand endpoint of the interval, x = 1, usually referred to as an artificial
boundary condition (abc). Han and Huang [3] have recently proposed such an abc for (1.1)
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resulting in the initial-boundary value problem

Up = Ugy + f(a,t), forz € (0,1), t>0 (1.2a)
u(0,t) = b(t), for ¢t > 0, (1.2b)
ug(1,t) + Gu(l,t) = g(t), for t > 0, (1.2¢)
u(z,0) = v(z), for x € (0,1), (1.2d)

with g(¢) = 0, where Gu may be thought of as a fractional derivative of order 3 of u, cf. [8], or

Gu(t) = Juy(t), where Ju(t) = %/0 \;U%ds. (1.3)

The function g(¢) will be included below for the purpose of our analysis.
To derive this abc at * = 1, we set b1(t) = u(1l,t), with u the solution of (1.1), and note
that u also solves
Ut = Ugy, forx>1, t>0,
u(1,t) = b1 (t), fort >0, and wu(z,0)=0, forxz>1.

Using Laplace transformation one shows that the solution of this problem is

x—1 [t

From this one finds, after some calculation, that

u(z,t) = (t— s)_3/2bl(s)e_(x_l)z/(‘l(t_s)) ds, forax>1,t>0.

t
ug(1,t) = 7\}7?/0 (t —s)" Y20, (s)ds = —Jus(1,t), fort >0,

and hence that the boundary condition at = 1 in (1.2) holds. Although [3] does not conatin
any error analysis, the authors demonstrated the effectiveness of this abc by numerical com-
putation. Recently Wu and Sun [7] have analyzed this abc for a slightly more complicated
difference scheme than the Crank-Nicolson one, and Zheng [8] employs the same condition for
the time discretized heat equation using the Z transform. For a technique that does not trun-
cate the domain, see Li and Greengard [4]. Tsynkov [6] contains a survey of numerical solution
on infinite domains.

Our purpose here is to analyze the solution of the truncated problem (1.2) by finite differ-
ences, using the #-method, for 0 < § < 1. For § = 0 this reduces to the explicit forward Euler
method, and for # > 0 the method is implicit, with the backward Euler method corresponding
to 8 = 1, and the Crank-Nicolson method to 8 = %

We use the spatial grid 2, = mh,m =0,1,... M +1, with h = 1/M’, where M is a positive
integer and M’ = M + %, thus also using the grid point 41 = 1 + %h to the right of the
right hand boundary, but with no gridpoint at x = 1. The step size in time is denoted by k,
with the corresponding time levels ¢,, = nk. We denote by U}} the difference approximation of
(T, t,) and introduce the forward and backward difference quotients in space and time by
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