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Abstract

This paper is concerned with developing accurate and efficient numerical methods for

one-dimensional fully nonlinear second order elliptic and parabolic partial differential equa-

tions (PDEs). In the paper we present a general framework for constructing high order

interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solu-

tions of these fully nonlinear PDEs. In order to capture discontinuities of the second order

derivative uxx of the solution u, three independent functions p1, p2 and p3 are introduced

to represent numerical derivatives using various one-sided limits. The proposed DG frame-

work, which is based on a nonstandard mixed formulation of the underlying PDE, embeds

a nonlinear problem into a mostly linear system of equations where the nonlinearity has

been modified to include multiple values of the second order derivative uxx. The proposed

framework extends a companion finite difference framework developed by the authors in [9]

and allows for the approximation of fully nonlinear PDEs using high order polynomials and

non-uniform meshes. In addition to the nonstandard mixed formulation setting, another

main idea is to replace the fully nonlinear differential operator by a numerical operator

which is consistent with the differential operator and satisfies certain monotonicity (called

g-monotonicity) properties. To ensure such a g-monotonicity, the crux of the construction

is to introduce the numerical moment, which plays a critical role in the proposed DG frame-

work. The g-monotonicity gives the DG methods the ability to select the mathematically

“correct” solution (i.e., the viscosity solution) among all possible solutions. Moreover, the

g-monotonicity allows for the possible development of more efficient nonlinear solvers as

the special nonlinearity of the algebraic systems can be explored to decouple the equations.

This paper also presents and analyzes numerical results for several numerical test problems

which are used to guage the accuracy and efficiency of the proposed DG methods.
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1. Introduction

Fully nonlinear partial differential equations (PDEs) refer to a class nonlinear PDEs which

is nonlinear in the highest order derivatives of the unknown functions in the equations. Due
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to their strong nonlinearity, this class of PDEs are most difficult to analyze analytically and to

approximate numerically. In the mean time, fully nonlinear PDEs arise in many applications

such as antenna design, astrophysics, differential geometry, fluid mechanics, image processing,

meteorology, mesh generation, optimal control, optimal mass transport, etc [8], which calls for

the development of efficient and reliable numerical methods for solving their underlying fully

nonlinear PDE problems.

This is the second paper in a series [9] which is devoted to developing finite difference (FD)

and discontinuous Galerkin (DG) methods for approximating viscosity solutions of the following

general one-dimensional fully nonlinear second order elliptic and parabolic equations:

F (uxx, ux, u, x) = 0, x ∈ Ω := (a, b), (1.1)

and

ut + F (uxx, ux, u, t, x) = 0, (x, t) ∈ ΩT := Ω× (0, T ], (1.2)

which are complemented by appropriate boundary and initial conditions. The goal of this paper

is to design and implement a class of interior penalty discontinuous Galerkin (IP-DG) methods

which is based on a nonstandard mixed formulation; the proposed IP-DG methods are named

mIP-DG methods. For the ease of presenting the main ideas and avoiding the technicalities,

in this paper we confine our attention to the one dimensional fully nonlinear second order

PDE problem. The generalization and extension to the high dimensional case of the mIP-DG

methods of this paper will be presented in a forthcoming work [11]. In fact, it will be seen later

that even in the one dimensional case, the construction and analysis of the proposed mIP-DG

methods is already quite complicated.

It is well known [8] that the primary challenges for approximating viscosity solutions of fully

nonlinear PDEs are caused by the very notion of viscosity solutions themselves (see section 2 for

the definition). Unlike the notion of weak solutions for linear and quasilinear PDEs, the notion of

viscosity solutions by design is non-variational, and, in general, viscosity solutions do not satisfy

the underlying PDEs in a tangible sense. The non-variational nature of viscosity solutions

immediately prevents any attempt to directly and straightforwardly construct Galerkin-type

(including DG) methods for approximating fully nonlinear PDEs; in other words, nonlinearity in

the highest order derivatives of the unknown function does not allow one to perform integration

by parts to transfer one order of derivatives to test functions as often done with linear and

quasilinear PDEs. Another big challenge for approximating viscosity solutions of fully nonlinear

PDEs is caused by the conditional uniqueness of viscosity solutions; namely, viscosity solutions

may only be unique in a restricted function class. Requiring numerical solutions to stay or

approximately stay in the same function class often imposes a difficult constraint for designing

numerical methods. Finally, we like to mention that as expected, solving the resulting strongly

nonlinear (algebraic) systems, regardless which discretization method is used, is another difficult

issue encountered with numerical fully nonlinear PDEs.

The mIP-DG methods proposed in this paper aim to approximate viscosity solutions of

(1.1) and (1.2) which belong to H1(Ω) in the spatial variable. We note that such a viscosity

still does not satisfy the underlying PDEs in a tangible sense. We also mention that in order to

approximate viscosity solutions that do not have H1 regularity in the spatial variable, we refer

the reader to a companion paper [12] in which we propose another class of more complicated

mixed discontinuous Galerkin that incorporates a local discontinuous Galerkin (LDG) approach

instead of the IP-DG approach. Such an alternate LDG approach is also more appropriate when

a more accurate approximation for ux is desired.


