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Abstract

In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner

variational principle. An O(h2) order superclose property for the stress and displacement

and a global superconvergence result of the displacement are established by employing a

Clément interpolation, an integral identity and appropriate postprocessing techniques.
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1. Introduction

1.1. Introduction

In this paper, we consider the mixed finite element (for short MFE) approximation of a

stress-displacement system derived from the Hellinger-Reissner variational principle for the

linear elasticity problem. As is known to all, the MFE methods require that the pair of finite

element spaces satisfying the B-B condition. Although there are a number of well-known stable

MFEs for the analogous problems involving vector fields and scalar fields [1], the combination of

the symmetry and continuity conditions of the stress field is a substantial additional difficulty.

On the other hand, a lot of efforts, dating back four decades, have been devoted to develop

stable MFEs for the linear elasticity problem, but no stable MFE scheme with polynomial shape

functions are yielded. Not until the year 2002, were there some development in this direction.

In [2], a sufficient condition was given and then a family of stable MFEs were constructed with

respect to arbitrary triangular meshes, with 24 stress and 6 displacement degrees of freedom

for the lowest order element, and an optimal order error estimate was obtained. An analogous

family of conforming MFEs based on rectangular meshes were proposed in [3], involving 45

stress and 12 displacement degrees of freedom for the lowest order element. Two nonconforming

triangular elements were presented in [4] with 12 degrees of freedom for the stress and 3 degrees

of freedom for the displacement.

Although many stable elements have been constructed for this problem, they involve too

much degrees of freedom. Recently, some more simple elements have been developed. In [5], a

group of nonconforming rectangular elements were introduced, with the convergence order of
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O(h) in L2-norm for both the stress and the displacement, and the simplest element employed

12 degrees of freedom for the stress and 4 for the displacement. In [6], a family of conforming

rectangular MFEs were proposed. It is closely related to one of the elements in [5]. Actually,

the same finite element space is used for the displacement, while the space used to approximate

the stress space is an extension of [5]. The lowest order pair in this family, with 17 degrees of

freedom for the stress and 4 for the displacement, results in a convergence rate of O(h2) for the

stress and O(h) for the displacement in L2-norm, respectively. In [7], a new family of minimal,

any space-dimensional, symmetric, nonconforming mixed finite elements were presented. In 1D,

it is nothing else but the 1D Raviart-Thomas element, which is the only conforming element

in this family. In 2D and higher dimensions, they are new elements but of the minimal degrees

of freedom. The total degrees of freedom for per element are 2 plus 1 in 1D, 7 plus 2 in 2D,

and 15 plus 3 in 3D, respectively. In [8], the elements used in [7] were extended to conforming

elements by enriching the spaces for both the stress and displacement, and the number of total

degrees of freedom for per element are 10 plus 4 in 2D, and 21 plus 6 in 3D respectively, which

are the simplest conforming rectangular elements so far.

On the other hand, the superconvergence study of the finite element methods is one of

the most active topics for a long time in theoretical analysis and practical computations, and

many valuable results about conforming and nonconforming finite elements have been obtained

for different problems [9 –16], but no consideration on this aspect is known about the finite

elements of [6]. In this paper, at the first attempt, we will have a try to fill this gap. We

obtain the supercloseness property of O(h2) order for the stress and displacement and the

superconvergence result of O(h2) order for the displacement in L2-norm through a Clément

interpolation, an integral identity and interpolation postprocessing techniques.

The rest of this paper is organized as follows. In next section, some notations and prelimi-

naries are introduced and the weak coercivity is established by the V-elliptic property and the

B-B condition. Then we present the construction of finite element spaces in section 3. The last

section is devoted to derive the supercloseness and global superconvergence of the displacement

field.

2. Notations and Preliminaries

In this part, firstly we introduce some special functional spaces and operators. Let Ω ⊂ R2

be a bounded convex domain, and p, v = (v[1], v[2]) and τ = (τij)2×2 be a function, vector-valued

field and symmetric tensor, respectively. We define the following notions:

gradp =

(

∂p/∂x

∂p/∂y

)

, div τ =

(

∂τ11/∂x+ ∂τ12/∂y

∂τ21/∂x+ ∂τ22/∂y

)

,

gradv =

(

∂v[1]
/

∂x ∂v[1]
/

∂y

∂v[2]
/

∂x ∂v[2]
/

∂y

)

, ǫ(v) =
1

2
(grad v + (grad)T v).

Let S denote the space of symmetric tensors, equipped with the inner product

(σ, τ) =

∫

Ω

σ : τ, where σ : τ =

2
∑

i,j=1

σijτij .

The space Hk(Ω, X) is defined as

Hk(Ω, X) =
{

v ∈ L2(Ω, X) |Dαv ∈ L2(Ω, X), ∀ |α| ≤ k
}

,


